Suppr超能文献

酵母泛素连接酶 Cdc34 赖氨酸特异性的分子基础。

Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34.

机构信息

Cell Cycle and Cancer Unit, St. Vincent's Institute of Medical Research, 9 Princes St., Fitzroy, Melbourne, Victoria 3065, Australia.

出版信息

Mol Cell Biol. 2010 May;30(10):2316-29. doi: 10.1128/MCB.01094-09. Epub 2010 Mar 1.

Abstract

Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination.

摘要

泛素(Ub)连接酶(E2s)和泛素连接酶(E3s)催化 Ub 与底物和 Ub 中赖氨酸残基的连接,在单泛素化和多泛素化过程中。赖氨酸的选择对于产生不同的底物-Ub 结构很重要,这为该途径将蛋白质靶向不同命运提供了多功能性。赖氨酸选择的机制仍知之甚少,先前的研究表明,泛素化位点是通过 E2/E3 介导的将赖氨酸(s)定位到 E2/E3 活性位点来选择的。通过研究 E2 蛋白 Cdc34 和 RING E3 Skp1/Cul1/F-box(SCF)蛋白对 Sic1 的多泛素化,我们现在证明,除了 E2/E3 介导的定位外,Sic1 和 Ub 中赖氨酸残基周围的近端氨基酸对于泛素化也很重要。这种机制与 Cdc34 的催化核心的关键残基有关,并且独立于 SCF。这些核心残基的改变改变了 Cdc34 的赖氨酸偏好性,并决定了该酶是否单泛素化或多泛素化 Sic1。这些新发现表明,接受赖氨酸残基周围的氨基酸与泛素连接酶催化核心中的关键氨基酸之间的兼容性是泛素化过程中赖氨酸选择的一个重要机制。

相似文献

1
Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34.
Mol Cell Biol. 2010 May;30(10):2316-29. doi: 10.1128/MCB.01094-09. Epub 2010 Mar 1.
5
Multimodal mechanism of action for the Cdc34 acidic loop: a case study for why ubiquitin-conjugating enzymes have loops and tails.
J Biol Chem. 2013 Nov 29;288(48):34882-96. doi: 10.1074/jbc.M113.509190. Epub 2013 Oct 15.
6
Ubiquitin-conjugating enzyme Cdc34 and ubiquitin ligase Skp1-cullin-F-box ligase (SCF) interact through multiple conformations.
J Biol Chem. 2015 Jan 9;290(2):1106-18. doi: 10.1074/jbc.M114.615559. Epub 2014 Nov 25.
9
Pivotal role for the ubiquitin Y59-E51 loop in lysine 48 polyubiquitination.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8434-9. doi: 10.1073/pnas.1407849111. Epub 2014 May 27.

引用本文的文献

1
SKP1-CUL1-F-box: Key molecular targets affecting disease progression.
FASEB J. 2025 Jan 31;39(2):e70326. doi: 10.1096/fj.202402816RR.
2
Increased CSN5 expression enhances the sensitivity to lenalidomide in multiple myeloma cells.
iScience. 2024 Nov 15;27(12):111399. doi: 10.1016/j.isci.2024.111399. eCollection 2024 Dec 20.
3
Cellular functions and molecular mechanisms of ubiquitination in osteosarcoma.
Front Oncol. 2022 Dec 1;12:1072701. doi: 10.3389/fonc.2022.1072701. eCollection 2022.
4
Monoubiquitination in Homeostasis and Cancer.
Int J Mol Sci. 2022 May 25;23(11):5925. doi: 10.3390/ijms23115925.
5
Functional conservation and divergence of the helix-turn-helix motif of E2 ubiquitin-conjugating enzymes.
EMBO J. 2022 Feb 1;41(3):e108823. doi: 10.15252/embj.2021108823. Epub 2021 Dec 23.
6
Unanchored Ubiquitin Chains, Revisited.
Front Cell Dev Biol. 2020 Oct 26;8:582361. doi: 10.3389/fcell.2020.582361. eCollection 2020.
7
Redox requirements for ubiquitin-like urmylation of Ahp1, a 2-Cys peroxiredoxin from yeast.
Redox Biol. 2020 Feb;30:101438. doi: 10.1016/j.redox.2020.101438. Epub 2020 Jan 22.
8
Proteolytic degradation of regulator of G protein signaling 2 facilitates temporal regulation of G signaling and vascular contraction.
J Biol Chem. 2017 Nov 24;292(47):19266-19278. doi: 10.1074/jbc.M117.797134. Epub 2017 Oct 3.
9
S. pombe Uba1-Ubc15 Structure Reveals a Novel Regulatory Mechanism of Ubiquitin E2 Activity.
Mol Cell. 2017 Feb 16;65(4):699-714.e6. doi: 10.1016/j.molcel.2017.01.008. Epub 2017 Feb 2.

本文引用的文献

1
Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17772-7. doi: 10.1073/pnas.0809222105. Epub 2008 Nov 13.
2
Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation.
Mol Cell. 2008 Oct 10;32(1):21-31. doi: 10.1016/j.molcel.2008.08.021.
4
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex.
Cell. 2008 May 16;133(4):653-65. doi: 10.1016/j.cell.2008.04.012.
5
Human Cdc34 employs distinct sites to coordinate attachment of ubiquitin to a substrate and assembly of polyubiquitin chains.
Mol Cell Biol. 2007 Oct;27(20):7041-52. doi: 10.1128/MCB.00812-07. Epub 2007 Aug 13.
6
Sequential E2s drive polyubiquitin chain assembly on APC targets.
Cell. 2007 Jul 13;130(1):127-39. doi: 10.1016/j.cell.2007.05.027.
7
E3-independent monoubiquitination of ubiquitin-binding proteins.
Mol Cell. 2007 Jun 22;26(6):891-8. doi: 10.1016/j.molcel.2007.05.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验