Suppr超能文献

不同类别人芳香酶(CYP19)抑制剂的对接和 3D-QSAR 研究。

Docking and 3D-QSAR studies of diverse classes of human aromatase (CYP19) inhibitors.

机构信息

Drug Theoretics and Cheminformatics Lab, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.

出版信息

J Mol Model. 2010 Oct;16(10):1597-616. doi: 10.1007/s00894-010-0667-y. Epub 2010 Mar 1.

Abstract

Aromatase (cytochrome 19) inhibitors have emerged as promising candidates for treatment of breast cancer. In search of potent aromatase inhibitors, docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using molecular shape, spatial, electronic, structural and thermodynamic descriptors have been performed on a diverse set of compounds having human aromatase inhibitory activities. An attempt has also been made to include two-dimensional (2D) descriptors in the QSAR studies. The chemometric tools used for model development are genetic function approximation (GFA) and genetic partial least squares (G/PLS). The docking study shows that the important interacting amino acids in the active site cavity are Met374, Arg115, Ile133, Ala306, Thr310, Asp309, Val370 and Ser478. One or more hydrogen bond formation with Met374 is one of the essential requirements for the ligands for optimum aromatase inhibition. The binding is further stabilized by van der Waals interactions with a few non-polar amino acid residues in the active site. The developed QSAR models indicate the importance of different shape, Jurs parameters, structural parameters, topological branching index and E-state index for different fragments. The results obtained from the QSAR analysis are supported by our docking observations. There should be one or two hydrogen bond acceptor groups (like -NO2, -CN) and optimal hydrophobicity for ideal aromatase inhibitors. A GFA model with spline option obtained using 3D descriptors was found to be the best model based on internal validation (Q2=0.668) while the best (externally) predictive model was a GFA model with spline option using combined set (2D and 3D) descriptors (Rpred2=0.687). Based on rm2(overall) criterion, the best model was a G/PLS model (using 3D descriptors) with spline option (rm2(overall)=0.606).

摘要

芳香酶(细胞色素 19)抑制剂已成为治疗乳腺癌的有前途的候选药物。为了寻找有效的芳香酶抑制剂,我们对具有人芳香酶抑制活性的多种化合物进行了分子形状、空间、电子、结构和热力学描述符的对接和三维定量构效关系(3D-QSAR)研究。我们还尝试在 QSAR 研究中包含二维(2D)描述符。用于模型开发的化学计量工具是遗传函数逼近(GFA)和遗传偏最小二乘(G/PLS)。对接研究表明,活性位点腔中重要的相互作用氨基酸是 Met374、Arg115、Ile133、Ala306、Thr310、Asp309、Val370 和 Ser478。与 Met374 形成一个或多个氢键是配体最佳芳香酶抑制的必要条件之一。结合进一步通过与活性位点中的几个非极性氨基酸残基的范德华相互作用得到稳定。所开发的 QSAR 模型表明,不同形状、Jurs 参数、结构参数、拓扑分支指数和 E 状态指数对不同片段的重要性。QSAR 分析结果得到了我们对接观察结果的支持。理想的芳香酶抑制剂应该有一个或两个氢键接受基团(如-NO2、-CN)和最佳的疏水性。使用 3D 描述符获得的具有样条选项的 GFA 模型被发现是基于内部验证(Q2=0.668)的最佳模型,而最佳(外部)预测模型是使用组合集(2D 和 3D)描述符的具有样条选项的 GFA 模型(Rpred2=0.687)。基于 rm2(整体)标准,最佳模型是具有样条选项(使用 3D 描述符)的 G/PLS 模型(rm2(整体)=0.606)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验