Suppr超能文献

瑞利-甘斯-德拜理论对非球形粒子散射的适用性。

Rayleigh-Gans-Debye applicability to scattering by nonspherical particles.

作者信息

Barber P W, Wang D S

出版信息

Appl Opt. 1978 Mar 1;17(5):797-803. doi: 10.1364/AO.17.000797.

Abstract

Rayleigh-Gans-Debye scattering theory is applicable to particles satisfying |m - 1| << 1 and 2ka |m - 1| << 1. It is often applied to large nonspherical particles such as bacteria where its validity is uncertain. The purpose of this study is to define the range of validity of the RGD approximation as applied to homogeneous nonspherical particles. Scattering calculations are made for a set of prolate spheroidal particles using the RGD approximation, and the results are compared to those obtained by the recently developed extended boundary condition method, a technique known to give accurate scattering results for nonspherical particles. Calculations for oriented particles with m = 1.05 verify that RGD error is dependent on particle orientation relative to the incident wave. Also, the error is found to increase with ka and to decrease with axial ratio for small particles, but increase with axial ratio for larger particles. Calculations for a particular randomly oriented particle show that the RGD approximation is more accurate for this case than if the incident wave is along the major dimension of the oriented particle.

摘要

瑞利 - 甘斯 - 德拜散射理论适用于满足|m - 1| << 1和2ka|m - 1| << 1的粒子。它常常应用于大型非球形粒子,如细菌,但在此情况下其有效性尚不确定。本研究的目的是确定瑞利 - 甘斯 - 德拜近似法应用于均匀非球形粒子时的有效范围。使用瑞利 - 甘斯 - 德拜近似法对一组长椭球形粒子进行散射计算,并将结果与最近开发的扩展边界条件法所获得的结果进行比较,扩展边界条件法是一种已知能给出非球形粒子准确散射结果的技术。对m = 1.05的定向粒子的计算证实,瑞利 - 甘斯 - 德拜近似法的误差取决于粒子相对于入射波的方向。此外,发现对于小粒子,误差随ka增大而增大,随轴比减小而减小,但对于较大粒子,误差随轴比增大而增大。对一个特定的随机取向粒子的计算表明,在这种情况下,瑞利 - 甘斯 - 德拜近似法比入射波沿定向粒子主尺寸方向时更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验