Suppr超能文献

免疫组织化学分析淋巴结阴性乳腺癌可预测转移风险。

Immunohistochemical profiling of node negative breast carcinomas allows prediction of metastatic risk.

机构信息

Department of Pathology, Hôpital Nord and Université de la Méditerranée, Marseille, France.

出版信息

Int J Oncol. 2010 Apr;36(4):889-98. doi: 10.3892/ijo_00000567.

Abstract

The aim of this study was to identify a prognostic immunohistochemical signature indicative of risk of early metastasis in node-negative breast carcinomas that would also be relevant to the development of new tailored therapy. Quantitative measurements of the immunohistochemical expression of 64 markers (selected from literature data) using high-throughput densitometry (as a continuous variable) of digitised microscopic micro-array images were correlated with clinical outcome in 667 node-negative breast carcinomas (mean follow-up 102 months). Multivariable fractional polynomials model of logistic regression allowed the selection of the best combination of markers (in terms of sensitivity and specificity) to predict patient outcome without any categorisation using predefined cut-points for individual marker measurements. A highly predictive ten-marker (out of 64) signature was identified comprising PI3K, pmTOR, pMAPKAPK-2, SHARP-2, P21, HIF-1alpha, Moesin, p4EBP-1, pAKT and P27 that well classified 91.4% of node-negative patients (specificity 90.9%, sensitivity 93.7%, area under ROC curve 0.958) independently of estrogen receptors (ER), and progesterone receptors (PR) and HER-2 status (91.6% well classified patients when ER, PR, HER-2 excluded). It is concluded that quantitative immunoprofiling of node-negative breast carcinomas is helpful in selecting patients who should not receive aggressive adjuvant chemotherapy and provides data for the development of tailored therapy.

摘要

本研究旨在确定一种预后免疫组织化学特征,该特征可提示淋巴结阴性乳腺癌早期转移的风险,同时也与新的靶向治疗的发展相关。使用高通量密度测定法(作为连续变量)对 667 例淋巴结阴性乳腺癌(平均随访 102 个月)的数字微阵列图像进行 64 种标记物(从文献数据中选择)的免疫组织化学表达的定量测量,并与临床结局相关联。多元分数多项式逻辑回归模型允许选择最佳的标记物组合(在敏感性和特异性方面),无需使用个体标记物测量的预定义分界点进行分类,从而预测患者的结局。确定了一个高度预测性的十标记(64 个中的 10 个)特征,包括 PI3K、pmTOR、pMAPKAPK-2、SHARP-2、P21、HIF-1alpha、Moesin、p4EBP-1、pAKT 和 P27,该特征可很好地分类 91.4%的淋巴结阴性患者(特异性 90.9%,敏感性 93.7%,ROC 曲线下面积 0.958),与雌激素受体(ER)、孕激素受体(PR)和 HER-2 状态无关(当 ER、PR、HER-2 排除时,91.6%的患者得到很好的分类)。结论:对淋巴结阴性乳腺癌进行定量免疫组化分析有助于选择不应接受强化辅助化疗的患者,并为靶向治疗的发展提供数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验