Suppr超能文献

基于残基结构邻域建模自动预测催化残基。

Automatic prediction of catalytic residues by modeling residue structural neighborhood.

机构信息

Information Engineering and Computer Science Department, via Sommarive 14 - I38100 (Povo) Trento, Italy.

出版信息

BMC Bioinformatics. 2010 Mar 3;11:115. doi: 10.1186/1471-2105-11-115.

Abstract

BACKGROUND

Prediction of catalytic residues is a major step in characterizing the function of enzymes. In its simpler formulation, the problem can be cast into a binary classification task at the residue level, by predicting whether the residue is directly involved in the catalytic process. The task is quite hard also when structural information is available, due to the rather wide range of roles a functional residue can play and to the large imbalance between the number of catalytic and non-catalytic residues.

RESULTS

We developed an effective representation of structural information by modeling spherical regions around candidate residues, and extracting statistics on the properties of their content such as physico-chemical properties, atomic density, flexibility, presence of water molecules. We trained an SVM classifier combining our features with sequence-based information and previously developed 3D features, and compared its performance with the most recent state-of-the-art approaches on different benchmark datasets. We further analyzed the discriminant power of the information provided by the presence of heterogens in the residue neighborhood.

CONCLUSIONS

Our structure-based method achieves consistent improvements on all tested datasets over both sequence-based and structure-based state-of-the-art approaches. Structural neighborhood information is shown to be responsible for such results, and predicting the presence of nearby heterogens seems to be a promising direction for further improvements.

摘要

背景

催化残基的预测是表征酶功能的主要步骤。在更简单的形式中,该问题可以在残基水平上被归结为二元分类任务,通过预测残基是否直接参与催化过程。即使有结构信息可用,由于功能残基可以发挥的作用范围很广,以及催化残基和非催化残基数量之间的巨大不平衡,该任务也相当困难。

结果

我们通过对候选残基周围的球形区域建模,并提取其内容的属性(如理化性质、原子密度、柔韧性、水分子存在情况)的统计信息,开发了一种有效的结构信息表示方法。我们训练了一个 SVM 分类器,将我们的特征与基于序列的信息和以前开发的 3D 特征相结合,并将其性能与不同基准数据集上最新的最先进方法进行了比较。我们进一步分析了残基邻域中杂原子存在提供的信息的判别能力。

结论

我们的基于结构的方法在所有测试数据集上都优于基于序列和基于结构的最先进方法,实现了一致的改进。结构邻域信息是导致这些结果的原因,并且预测附近杂原子的存在似乎是进一步改进的有前途的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0342/2844391/7cdc30343e51/1471-2105-11-115-1.jpg

相似文献

1
Automatic prediction of catalytic residues by modeling residue structural neighborhood.
BMC Bioinformatics. 2010 Mar 3;11:115. doi: 10.1186/1471-2105-11-115.
2
Active site prediction using evolutionary and structural information.
Bioinformatics. 2010 Mar 1;26(5):617-24. doi: 10.1093/bioinformatics/btq008. Epub 2010 Jan 14.
3
Structure-based identification of catalytic residues.
Proteins. 2011 Jun;79(6):1952-63. doi: 10.1002/prot.23020. Epub 2011 Apr 12.
4
EXIA2: web server of accurate and rapid protein catalytic residue prediction.
Biomed Res Int. 2014;2014:807839. doi: 10.1155/2014/807839. Epub 2014 Sep 11.
5
CSmetaPred: a consensus method for prediction of catalytic residues.
BMC Bioinformatics. 2017 Dec 22;18(1):583. doi: 10.1186/s12859-017-1987-z.
6
Accurate sequence-based prediction of catalytic residues.
Bioinformatics. 2008 Oct 15;24(20):2329-38. doi: 10.1093/bioinformatics/btn433. Epub 2008 Aug 18.
7
Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
PLoS One. 2012;7(10):e47951. doi: 10.1371/journal.pone.0047951. Epub 2012 Oct 24.
9
10
Evaluation of features for catalytic residue prediction in novel folds.
Protein Sci. 2007 Feb;16(2):216-26. doi: 10.1110/ps.062523907. Epub 2006 Dec 22.

引用本文的文献

1
CSmetaPred: a consensus method for prediction of catalytic residues.
BMC Bioinformatics. 2017 Dec 22;18(1):583. doi: 10.1186/s12859-017-1987-z.
3
Evolutionary Conserved Positions Define Protein Conformational Diversity.
PLoS Comput Biol. 2016 Mar 23;12(3):e1004775. doi: 10.1371/journal.pcbi.1004775. eCollection 2016 Mar.
4
EXIA2: web server of accurate and rapid protein catalytic residue prediction.
Biomed Res Int. 2014;2014:807839. doi: 10.1155/2014/807839. Epub 2014 Sep 11.
5
In silico comparative characterization of pharmacogenomic missense variants.
BMC Genomics. 2014;15 Suppl 4(Suppl 4):S4. doi: 10.1186/1471-2164-15-S4-S4. Epub 2014 May 20.
6
On the structural context and identification of enzyme catalytic residues.
Biomed Res Int. 2013;2013:802945. doi: 10.1155/2013/802945. Epub 2013 Feb 3.
7
Protein structure based prediction of catalytic residues.
BMC Bioinformatics. 2013 Feb 22;14:63. doi: 10.1186/1471-2105-14-63.
8
Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
PLoS One. 2012;7(10):e47951. doi: 10.1371/journal.pone.0047951. Epub 2012 Oct 24.
10
L1pred: a sequence-based prediction tool for catalytic residues in enzymes with the L1-logreg classifier.
PLoS One. 2012;7(4):e35666. doi: 10.1371/journal.pone.0035666. Epub 2012 Apr 27.

本文引用的文献

2
Structural descriptor database: a new tool for sequence-based functional site prediction.
BMC Bioinformatics. 2008 Nov 25;9:492. doi: 10.1186/1471-2105-9-492.
3
Accurate sequence-based prediction of catalytic residues.
Bioinformatics. 2008 Oct 15;24(20):2329-38. doi: 10.1093/bioinformatics/btn433. Epub 2008 Aug 18.
4
MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence.
Bioinformatics. 2008 Sep 15;24(18):2094-5. doi: 10.1093/bioinformatics/btn371. Epub 2008 Jul 16.
5
Structure-based function prediction: approaches and applications.
Brief Funct Genomic Proteomic. 2008 Jul;7(4):291-302. doi: 10.1093/bfgp/eln030. Epub 2008 Jul 3.
6
An improved prediction of catalytic residues in enzyme structures.
Protein Eng Des Sel. 2008 May;21(5):295-302. doi: 10.1093/protein/gzn003. Epub 2008 Feb 20.
7
Prediction of zinc-binding sites in proteins from sequence.
Bioinformatics. 2008 Mar 15;24(6):775-82. doi: 10.1093/bioinformatics/btm618. Epub 2008 Feb 1.
8
Prediction of protein functional residues from sequence by probability density estimation.
Bioinformatics. 2008 Mar 1;24(5):613-20. doi: 10.1093/bioinformatics/btm626. Epub 2008 Jan 2.
9
Robust recognition of zinc binding sites in proteins.
Protein Sci. 2008 Jan;17(1):54-65. doi: 10.1110/ps.073138508. Epub 2007 Nov 27.
10
Predicting active site residue annotations in the Pfam database.
BMC Bioinformatics. 2007 Aug 9;8:298. doi: 10.1186/1471-2105-8-298.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验