Laboratory for Bioinformatics and Computational Biology, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
J Proteome Res. 2010 May 7;9(5):2705-12. doi: 10.1021/pr100181g.
Peptide abundance estimation is generally the first step in protein quantification. In peptide abundance estimation, peptide overlapping and peak intensity variation are two challenges. The main objective of this paper is to estimate peptide abundance by taking advantage of peptide isotopic distribution and smoothness of peptide elution profile. Our method proposes to solve the peptide overlapping problem and provides a way to control the variance of estimation. We compare our method with a commonly used method on simulated data sets and two real data sets of standard protein mixtures. The results show that our method achieves more accurate estimation of peptide abundance on different samples. In our method, there is a variance-related parameter. Considering the well-known trade-off between the variance and the bias of estimation, we should not only focus on reducing the variance in real applications. A suggestion about parameter selection is given based on the discussion of variance and bias. Matlab source codes and detailed experimental results are available at http://bioinformatics.ust.hk/PeptideQuant/peptidequant.htm.
肽丰度估计通常是蛋白质定量的第一步。在肽丰度估计中,肽重叠和峰强度变化是两个挑战。本文的主要目的是利用肽的同位素分布和肽洗脱轮廓的平滑性来估计肽的丰度。我们的方法提出了解决肽重叠问题的方法,并提供了一种控制估计方差的方法。我们在模拟数据集和两个标准蛋白质混合物的真实数据集上比较了我们的方法和一种常用的方法。结果表明,我们的方法在不同的样本上实现了更准确的肽丰度估计。在我们的方法中,存在一个与方差相关的参数。考虑到估计的方差和偏差之间众所周知的权衡,在实际应用中,我们不仅要关注降低方差。根据方差和偏差的讨论,给出了关于参数选择的建议。Matlab 源代码和详细的实验结果可在 http://bioinformatics.ust.hk/PeptideQuant/peptidequant.htm 上获得。