Suppr超能文献

心房选择性钠通道阻滞作为管理心房颤动的一种新策略。

Atrial-selective sodium channel block as a novel strategy for the management of atrial fibrillation.

机构信息

Masonic Medical Research Laboratory, Utica, New York 13501, USA.

出版信息

Ann N Y Acad Sci. 2010 Feb;1188:78-86. doi: 10.1111/j.1749-6632.2009.05086.x.

Abstract

Safe and effective pharmacologic management of atrial fibrillation (AF) is one of the greatest challenges facing an aging society. Currently available pharmacologic strategies for rhythm control of AF are associated with ventricular arrhythmias and in some cases multi-organ toxicity. Consequently, drug development has focused on atrial-selective agents such as IKur blockers. Recent studies suggest that IKur block alone may be ineffective for suppression of AF and may promote AF in healthy hearts. Recent experimental studies have demonstrated other important electrophysiologic differences between atrial and ventricular cells, particularly with respect to sodium channel function, and have identified sodium channel blockers that exploit these electrophysiologic distinctions. Atrial-selective sodium channel blockers, such as ranolazine and amiodarone, effectively suppress and/or prevent the induction of AF in experimental models, while producing little to no effect on ventricular myocardium. These findings suggest that atrial-selective sodium channel block may be a fruitful new strategy for the management of AF.

摘要

安全有效的心房颤动(AF)药物治疗是老龄化社会面临的最大挑战之一。目前用于 AF 节律控制的药物治疗策略与室性心律失常有关,在某些情况下还与多器官毒性有关。因此,药物研发的重点是心房选择性药物,如 IKur 阻滞剂。最近的研究表明,单独阻断 IKur 可能对抑制 AF 无效,甚至可能在健康心脏中促进 AF 的发生。最近的实验研究表明,心房细胞和心室细胞之间存在其他重要的电生理差异,特别是在钠通道功能方面,并已确定利用这些电生理差异的钠通道阻滞剂。心房选择性钠通道阻滞剂,如雷诺嗪和胺碘酮,可有效抑制和/或预防实验模型中 AF 的诱发,而对心室心肌几乎没有影响。这些发现表明,心房选择性钠通道阻断可能是 AF 管理的一个有前途的新策略。

相似文献

1
Atrial-selective sodium channel block as a novel strategy for the management of atrial fibrillation.
Ann N Y Acad Sci. 2010 Feb;1188:78-86. doi: 10.1111/j.1749-6632.2009.05086.x.
2
Atrial-selective sodium channel block as a novel strategy for the management of atrial fibrillation.
J Electrocardiol. 2009 Nov-Dec;42(6):543-8. doi: 10.1016/j.jelectrocard.2009.07.007. Epub 2009 Aug 20.
3
Atrial-selective sodium channel blockers: do they exist?
J Cardiovasc Pharmacol. 2008 Aug;52(2):121-8. doi: 10.1097/FJC.0b013e31817618eb.
4
Atrial-selective sodium channel block as a strategy for suppression of atrial fibrillation.
Ann N Y Acad Sci. 2008 Mar;1123:105-12. doi: 10.1196/annals.1420.012.
5
Role of late sodium channel current block in the management of atrial fibrillation.
Cardiovasc Drugs Ther. 2013 Feb;27(1):79-89. doi: 10.1007/s10557-012-6421-1.
6
Potassium Channel Blockade Enhances Atrial Fibrillation-Selective Antiarrhythmic Effects of Optimized State-Dependent Sodium Channel Blockade.
Circulation. 2015 Dec 8;132(23):2203-11. doi: 10.1161/CIRCULATIONAHA.115.018016. Epub 2015 Oct 23.
7
The Past, Present, and Potential Future of Sodium Channel Block as an Atrial Fibrillation Suppressing Strategy.
J Cardiovasc Pharmacol. 2015 Nov;66(5):432-40. doi: 10.1097/FJC.0000000000000271.
9
Atrial-selective sodium channel block for the treatment of atrial fibrillation.
Expert Opin Emerg Drugs. 2009 Jun;14(2):233-49. doi: 10.1517/14728210902997939.
10
Atrial-selective sodium channel block strategy to suppress atrial fibrillation: ranolazine versus propafenone.
J Pharmacol Exp Ther. 2012 Jan;340(1):161-8. doi: 10.1124/jpet.111.186395. Epub 2011 Oct 17.

引用本文的文献

1
Acute antiarrhythmic effects of SGLT2 inhibitors-dapagliflozin lowers the excitability of atrial cardiomyocytes.
Basic Res Cardiol. 2024 Feb;119(1):93-112. doi: 10.1007/s00395-023-01022-0. Epub 2024 Jan 3.
2
Dual effects of the small-conductance Ca-activated K current on human atrial electrophysiology and Ca-driven arrhythmogenesis: an in silico study.
Am J Physiol Heart Circ Physiol. 2023 Oct 1;325(4):H896-H908. doi: 10.1152/ajpheart.00362.2023. Epub 2023 Aug 25.
3
Patch-Clamp Recordings of Action Potentials From Human Atrial Myocytes: Optimization Through Dynamic Clamp.
Front Pharmacol. 2021 Apr 12;12:649414. doi: 10.3389/fphar.2021.649414. eCollection 2021.
4
Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics.
Front Bioeng Biotechnol. 2017 May 8;5:29. doi: 10.3389/fbioe.2017.00029. eCollection 2017.
5
Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics.
J Physiol. 2017 Apr 1;595(7):2229-2252. doi: 10.1113/JP272883. Epub 2017 Jan 5.
6
Anti-arrhythmic strategies for atrial fibrillation: The role of computational modeling in discovery, development, and optimization.
Pharmacol Ther. 2016 Dec;168:126-142. doi: 10.1016/j.pharmthera.2016.09.012. Epub 2016 Sep 6.
7
Atrial-selective targeting of arrhythmogenic phase-3 early afterdepolarizations in human myocytes.
J Mol Cell Cardiol. 2016 Jul;96:63-71. doi: 10.1016/j.yjmcc.2015.07.030. Epub 2015 Aug 1.
8
Risk factors and outcomes associated with new-onset atrial fibrillation during acute respiratory distress syndrome.
J Crit Care. 2015 Oct;30(5):994-7. doi: 10.1016/j.jcrc.2015.06.003. Epub 2015 Jun 16.
9
Vernakalant for the conversion of atrial fibrillation: the new kid on the block?
Ann Noninvasive Electrocardiol. 2014 Jul;19(4):299-302. doi: 10.1111/anec.12164. Epub 2014 Apr 16.
10
Safety and efficacy of vernakalant for acute cardioversion of atrial fibrillation: an update.
Vasc Health Risk Manag. 2013;9:165-75. doi: 10.2147/VHRM.S43720. Epub 2013 Apr 23.

本文引用的文献

1
Atrial remodeling and atrial fibrillation: mechanisms and implications.
Circ Arrhythm Electrophysiol. 2008 Apr;1(1):62-73. doi: 10.1161/CIRCEP.107.754564.
2
New pharmacological strategies for the treatment of atrial fibrillation.
Ann Noninvasive Electrocardiol. 2009 Jul;14(3):290-300. doi: 10.1111/j.1542-474X.2009.00305.x.
3
Atrial-selective effects of chronic amiodarone in the management of atrial fibrillation.
Heart Rhythm. 2008 Dec;5(12):1735-42. doi: 10.1016/j.hrthm.2008.09.015. Epub 2008 Sep 16.
4
Atrial-selective pharmacological therapy for atrial fibrillation: hype or hope?
Curr Opin Cardiol. 2009 Jan;24(1):50-5. doi: 10.1097/HCO.0b013e32831bc336.
5
Amiodarone as paradigm for developing new drugs for atrial fibrillation.
J Cardiovasc Pharmacol. 2008 Oct;52(4):300-5. doi: 10.1097/FJC.0b013e31818914b6.
6
Can inhibition of IKur promote atrial fibrillation?
Heart Rhythm. 2008 Sep;5(9):1304-9. doi: 10.1016/j.hrthm.2008.05.020. Epub 2008 Aug 6.
9
Atrial-selective sodium channel blockers: do they exist?
J Cardiovasc Pharmacol. 2008 Aug;52(2):121-8. doi: 10.1097/FJC.0b013e31817618eb.
10
Pathology-specific effects of the IKur/Ito/IK,ACh blocker AVE0118 on ion channels in human chronic atrial fibrillation.
Br J Pharmacol. 2008 Aug;154(8):1619-30. doi: 10.1038/bjp.2008.209. Epub 2008 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验