Department of Biophysics, The School of Theoretical Modeling, PO Box 15676, Chevy Chase, MD 20825, USA.
J Theor Biol. 2010 May 21;264(2):585-92. doi: 10.1016/j.jtbi.2010.02.026. Epub 2010 Mar 2.
Protein secondary structure elements are arranged in distinct structural motifs such as four-alpha-helix bundle, 8alpha/8beta TIM-barrel, Rossmann dinucleotide binding fold, assembly of a helical rod. Each structural motif is characterized by a particular type of helix-helix interactions. A unique pattern of contacts is formed by interacting helices of the structural motif. In each type of fold, edges of the helix surface, which participate in the formation of helix-helix contacts with preceding and following helices, differ. This work shows that circular arrangements of the four, eight, and sixteen alpha-helices, which are found in the four-alpha-helical motif, TIM-barrel 8alpha/8beta fold, and helical rod of 16.3 helices per turn correspondingly, can be associated with the mutual positioning of the edges of the helix surfaces. Edges (i, i+1)-(i+1, i+2) of the helix surface are central for the interhelical contacts in a four-alpha-helix bundle. Edges (i, i+1)-(i+2, i+3) are involved in the assembly of four-alpha-helix subunits into helical rod of a tobacco mosaic virus and a three-helix fragment of a Rossmann fold. In 8alpha/8beta TIM-barrel fold, edges (i, i+1)-(i+5, i+6) are involved in the octagon arrangement. Approximation of a cross section of each motif with a polygon (n-gon, n=4, 8, 16) shows that a good correlation exists between polygon interior angles and angles formed by the edges of helix surfaces.
蛋白质二级结构元件排列在独特的结构基序中,如四螺旋束、8α/8β TIM 桶、罗斯曼二核苷酸结合折叠、螺旋棒的组装。每个结构基序的特征在于特定类型的螺旋-螺旋相互作用。结构基序的相互作用螺旋形成独特的接触模式。在每种折叠类型中,参与与前一个和后一个螺旋形成螺旋-螺旋接触的螺旋表面边缘不同。这项工作表明,在四螺旋基序、TIM 桶 8α/8β 折叠和每转 16.3 个螺旋的螺旋棒中发现的四、八和十六个α螺旋的圆形排列,可以与螺旋表面边缘的相互定位相关联。螺旋表面的边缘 (i, i+1)-(i+1, i+2) 对于四螺旋束中的螺旋间接触是至关重要的。边缘 (i, i+1)-(i+2, i+3) 参与四螺旋亚基组装成烟草花叶病毒和罗斯曼折叠的三螺旋片段的螺旋棒。在 8α/8β TIM 桶折叠中,边缘 (i, i+1)-(i+5, i+6) 参与八角形排列。用多边形(n 边形,n=4、8、16)近似每个基序的横截面表明,多边形内角和螺旋表面边缘形成的角度之间存在很好的相关性。