Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
J Hum Genet. 2010 Apr;55(4):219-26. doi: 10.1038/jhg.2010.9. Epub 2010 Mar 5.
The genetic architecture of a disease determines the epidemiological methods for its examination. Recently, Bodmer and Bonilla suggested that moderately strong, moderately rare variants contribute substantially to the genetic population attributable risk (PAR) of common diseases. In the first part of this communication, I provide a concise reconstruction of their deliberation. Variants contributing to human disease can be identified by linkage or by association tests. Risch and Merikangas analyzed the power of these tests by comparing the affected sib-pair linkage test (ASP) and the transmission disequilibrium association test (TDT). In the second part of this paper, I give an accessible reconstruction of this comparison and derive simple approximations in the low allele frequency range, directly showing that the linkage test is much more sensitive to a decrease of frequency or effect size. In the third part, I analyze a disease model whose genetic architecture is proportional to Kimura's infinite sites model. The relation between a variant's selection coefficient and its effect size in disease generation is assumed to be simple, and the number of contributing genetic variants is determined by the sum of their approximative PAR contributions. An association test (TDT) is finally applied to this disease model. For different ranges of effect size and allele frequency, I derive the minimal sample size necessary to detect at least one contributing variant. It turns out that, although the majority of contributing variants is not accessible with realistic sample sizes, a minimum of sample size may be given for moderately strong variants in the 1% frequency range.
疾病的遗传结构决定了其检查的流行病学方法。最近,Bodmer 和 Bonilla 提出,中度强、中度罕见的变异对常见疾病的遗传人群归因风险(PAR)有很大贡献。在本通讯的第一部分,我提供了他们的推理的简要重建。可以通过连锁或关联测试来识别导致人类疾病的变异。Risch 和 Merikangas 通过比较受影响的同胞对连锁测试(ASP)和传递不平衡关联测试(TDT)分析了这些测试的功效。在本文的第二部分,我给出了这个比较的可理解重建,并在低等位基因频率范围内推导出简单的近似值,直接表明连锁测试对频率或效应大小的降低更为敏感。在第三部分,我分析了一种疾病模型,其遗传结构与 Kimura 的无限位点模型成比例。假设变异的选择系数与其在疾病发生中的效应大小之间的关系很简单,并且贡献遗传变异的数量由其近似 PAR 贡献的总和决定。最后,将关联测试(TDT)应用于该疾病模型。对于不同的效应大小和等位基因频率范围,我推导出了检测至少一个贡献变异所需的最小样本量。事实证明,尽管大多数贡献变异无法通过现实的样本量获得,但在 1%频率范围内,中度强变体可能会有最小的样本量。