Suppr超能文献

基于内容的图像检索方法和有限参考数据库评估计算机辅助检测方案的性能和可靠性。

Assessment of performance and reliability of computer-aided detection scheme using content-based image retrieval approach and limited reference database.

机构信息

Department of Radiology, University of Pittsburgh, 3362 Fifth Avenue, Pittsburgh, PA 15213, USA.

出版信息

J Digit Imaging. 2011 Apr;24(2):352-9. doi: 10.1007/s10278-010-9281-x.

Abstract

Content-based image retrieval approach was used in our computer-aided detection (CAD) schemes for breast cancer detection with mammography. In this study, we assessed CAD performance and reliability using a reference database including 1500 positive (breast mass) regions of interest (ROIs) and 1500 normal ROIs. To test the relationship between CAD performance and the similarity level between the queried ROI and the retrieved ROIs, we applied a set of similarity thresholds to the retrieved similar ROIs selected by the CAD schemes for all queried suspicious regions, and used only the ROIs that were above the threshold for assessing CAD performance at each threshold level. Using the leave-one-out testing method, we computed areas under receiver operating characteristic (ROC) curves (A(Z)) to assess CAD performance. The experimental results showed that as threshold increase, (1) less true positive ROIs can be referenced in the database than normal ROIs and (2) the A(Z) value was monotonically increased from 0.854 ± 0.004 to 0.932 ± 0.016. This study suggests that (1) in order to more accurately detect and diagnose subtle masses, a large and diverse database is required, and (2) assessing the reliability of the decision scores based on the similarity measurement is important in application of the CBIR-based CAD schemes when the limited database is used.

摘要

基于内容的图像检索方法被用于我们的计算机辅助检测(CAD)系统中,以进行乳腺 X 线摄影的乳腺癌检测。在这项研究中,我们使用了一个包含 1500 个阳性(乳腺肿块)感兴趣区域(ROI)和 1500 个正常 ROI 的参考数据库来评估 CAD 的性能和可靠性。为了测试 CAD 性能与查询 ROI 与检索 ROI 之间的相似性水平之间的关系,我们为所有可疑区域的 CAD 方案检索的相似 ROI 应用了一组相似性阈值,并仅在每个阈值水平上使用高于阈值的 ROI 来评估 CAD 性能。使用留一法测试方法,我们计算了接收者操作特征(ROC)曲线下的面积(A(Z)),以评估 CAD 的性能。实验结果表明,随着阈值的增加:(1)与正常 ROI 相比,数据库中可以参考的真阳性 ROI 较少;(2)A(Z) 值从 0.854 ± 0.004 单调增加到 0.932 ± 0.016。本研究表明:(1)为了更准确地检测和诊断细微的肿块,需要一个大型且多样化的数据库;(2)当使用有限的数据库时,基于相似性测量评估基于 CBIR 的 CAD 方案的决策得分的可靠性非常重要。

相似文献

2
Computer-aided detection; the effect of training databases on detection of subtle breast masses.
Acad Radiol. 2010 Nov;17(11):1401-8. doi: 10.1016/j.acra.2010.06.009. Epub 2010 Jul 22.
3
Improving performance of content-based image retrieval schemes in searching for similar breast mass regions: an assessment.
Phys Med Biol. 2009 Feb 21;54(4):949-61. doi: 10.1088/0031-9155/54/4/009. Epub 2009 Jan 16.
4
An interactive system for computer-aided diagnosis of breast masses.
J Digit Imaging. 2012 Oct;25(5):570-9. doi: 10.1007/s10278-012-9451-0.
6
7
8
Assessment of performance improvement in content-based medical image retrieval schemes using fractal dimension.
Acad Radiol. 2009 Oct;16(10):1171-8. doi: 10.1016/j.acra.2009.04.009. Epub 2009 Jun 12.
10
Dual system approach to computer-aided detection of breast masses on mammograms.
Med Phys. 2006 Nov;33(11):4157-68. doi: 10.1118/1.2357838.

本文引用的文献

3
Using relevance feedback to reduce the semantic gap in content-based image retrieval of mammographic masses.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:406-9. doi: 10.1109/IEMBS.2008.4649176.
4
Improving performance of content-based image retrieval schemes in searching for similar breast mass regions: an assessment.
Phys Med Biol. 2009 Feb 21;54(4):949-61. doi: 10.1088/0031-9155/54/4/009. Epub 2009 Jan 16.
6
Selection of examples in case-based computer-aided decision systems.
Phys Med Biol. 2008 Nov 7;53(21):6079-96. doi: 10.1088/0031-9155/53/21/013. Epub 2008 Oct 14.
7
9
Current status and future directions of computer-aided diagnosis in mammography.
Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):224-35. doi: 10.1016/j.compmedimag.2007.02.009. Epub 2007 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验