National e-Science Centre, School of Informatics, University of Edinburgh, Edinburgh, UK.
Eur Radiol. 2010 Aug;20(8):1896-904. doi: 10.1007/s00330-010-1745-3. Epub 2010 Mar 4.
Medical imaging acquired for clinical purposes can have several legitimate secondary uses in research projects and teaching libraries. No commonly accepted solution for anonymising these images exists because the amount of personal data that should be preserved varies case by case. Our objective is to provide a flexible mechanism for anonymising Digital Imaging and Communications in Medicine (DICOM) data that meets the requirements for deployment in multicentre trials.
We reviewed our current de-identification practices and defined the relevant use cases to extract the requirements for the de-identification process. We then used these requirements in the design and implementation of the toolkit. Finally, we tested the toolkit taking as a reference those requirements, including a multicentre deployment.
The toolkit successfully anonymised DICOM data from various sources. Furthermore, it was shown that it could forward anonymous data to remote destinations, remove burned-in annotations, and add tracking information to the header. The toolkit also implements the DICOM standard confidentiality mechanism.
A DICOM de-identification toolkit that facilitates the enforcement of privacy policies was developed. It is highly extensible, provides the necessary flexibility to account for different de-identification requirements and has a low adoption barrier for new users.
出于临床目的获取的医学成像在研究项目和教学库中可以有几种合法的次要用途。由于每种情况下应保留的个人数据量不同,因此不存在用于对这些图像进行匿名化的通用解决方案。我们的目标是提供一种灵活的机制,用于对符合多中心试验部署要求的数字成像和通信医学(DICOM)数据进行匿名化。
我们回顾了当前的去识别实践,并定义了相关用例,以提取去识别过程的要求。然后,我们在工具包的设计和实现中使用了这些要求。最后,我们参考这些要求对工具包进行了测试,包括多中心部署。
该工具包成功地对来自不同来源的 DICOM 数据进行了匿名化。此外,它还表明,它可以将匿名数据转发到远程目的地,删除内置注释,并向标题添加跟踪信息。该工具包还实现了 DICOM 标准的保密性机制。
开发了一种便于执行隐私政策的 DICOM 去识别工具包。它具有高度的可扩展性,为满足不同的去识别要求提供了必要的灵活性,并且对新用户具有较低的采用障碍。