Department of Neural and Pain Sciences, University of Maryland, 650 West Baltimore Street, Baltimore, MD 21201, USA Graduate Program in Neuroscience, University of Maryland, Baltimore, MD, USA Department of Obstetrics and Gynecology, University of Texas, Galveston, TX 77555, USA.
Pain. 2010 May;149(2):284-295. doi: 10.1016/j.pain.2010.02.022. Epub 2010 Mar 5.
Non-invasive, movement-based models were used to investigate muscle pain. In rats, the masseter muscle was rapidly stretched or electrically stimulated during forced lengthening to produce eccentric muscle contractions (EC). Both EC and stretching disrupted scattered myofibers and produced intramuscular plasma extravasation. Pro-inflammatory cytokines (IL-1beta, TNF-alpha, IL-6) and vascular endothelial growth factor (VEGF) were elevated in the masseter 24h following EC. At 48h, neutrophils increased and ED1 macrophages infiltrated myofibers while ED2 macrophages were abundant at 4d. Mechanical hyperalgesia was evident in the ipsilateral head 4h-4d after a single bout of EC and for 7d following multiple bouts (1 bout/d for 4d). Calcitonin gene-related peptide (CGRP) mRNA increased in the trigeminal ganglion 24h following EC while immunoreactive CGRP decreased. By 2d, CGRP-muscle afferent numbers equaled naive numbers implying that CGRP is released following EC and replenished within 2d. EC elevated P2X(3) mRNA and increased P2X(3) muscle afferent neuron number for 12d while electrical stimulation without muscle contraction altered neither CGRP nor P2X(3) mRNA levels. Muscle stretching produced hyperalgesia for 2d whereas contraction alone produced no hyperalgesia. Stretching increased CGRP mRNA at 24h but not CGRP-muscle afferent number at 2-12d. In contrast, stretching significantly increased the number of P2X(3) muscle afferent neurons for 12d. The sustained, elevated P2X(3) expression evoked by EC and stretching may enhance nociceptor responsiveness to ATP released during subsequent myofiber damage. Movement-based actions such as EC and muscle stretching produce unique tissue responses and modulate neuropeptide and nociceptive receptor expression in a manner particularly relevant to repeated muscle damage.
使用非侵入性、基于运动的模型来研究肌肉疼痛。在大鼠中,在强制延长过程中快速拉伸或电刺激咀嚼肌,产生离心肌肉收缩(EC)。EC 和拉伸都会破坏分散的肌纤维,并导致肌内血浆外渗。在 EC 后 24 小时,咀嚼肌中促炎细胞因子(IL-1beta、TNF-alpha、IL-6)和血管内皮生长因子(VEGF)升高。在 48 小时时,中性粒细胞增加,ED1 巨噬细胞浸润肌纤维,而 ED2 巨噬细胞在 4 天时丰富。单次 EC 后 4 小时至 4 天,对侧头部出现机械性痛觉过敏,多次 EC(1 次/天,持续 4 天)后持续 7 天。在 EC 后 24 小时,三叉神经节中降钙素基因相关肽(CGRP)mRNA 增加,而免疫反应性 CGRP 减少。到第 2 天,CGRP-肌肉传入神经元数量与未受刺激时相等,这意味着 EC 后 CGRP 被释放,并在 2 天内得到补充。EC 使 P2X(3)mRNA 升高,并在 12 天内增加 P2X(3)肌肉传入神经元数量,而无肌肉收缩的电刺激既不改变 CGRP 也不改变 P2X(3)mRNA 水平。肌肉拉伸引起 2 天的痛觉过敏,而单独的收缩则不会引起痛觉过敏。拉伸在 24 小时增加 CGRP mRNA,但在 2-12 天内不增加 CGRP-肌肉传入神经元数量。相比之下,拉伸显著增加 P2X(3)肌肉传入神经元数量 12 天。EC 和拉伸引起的持续、升高的 P2X(3)表达可能增强伤害感受器对随后肌纤维损伤过程中释放的 ATP 的反应性。基于运动的动作,如 EC 和肌肉拉伸,会产生独特的组织反应,并以与反复肌肉损伤特别相关的方式调节神经肽和伤害感受器的表达。