Physics Department, New York City College of Technology, The City University of New York, Brooklyn, NY 11201, USA.
Nanotechnology. 2010 Apr 2;21(13):134019. doi: 10.1088/0957-4484/21/13/134019. Epub 2010 Mar 8.
The collective properties of different quasiparticles in various graphene-based structures in a high magnetic field have been studied. We predict Bose-Einstein condensation (BEC) and the superfluidity of 2D spatially indirect magnetoexcitons in a two-layer graphene. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition are shown to be increasing functions of the excitonic density but decreasing functions of a magnetic field and the interlayer separation. The instability of the ground state of the interacting 2D indirect magnetoexcitons in a slab of superlattice with alternating electron and hole graphene layers (GLs) is established. The stable system of indirect 2D magnetobiexcitons, consisting of a pair of indirect excitons with antiparallel dipole moments, is considered in a graphene superlattice. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition for magnetobiexcitons in a graphene superlattice are obtained. Moreover, the BEC of excitonic polaritons in a GL embedded in a semiconductor microcavity in a high magnetic field is predicted. While the superfluid phase in this magnetoexciton polariton system is absent due to a vanishing magnetoexciton-magnetoexciton interaction in a single layer in the limit of a high magnetic field, the critical temperature of the BEC formation is calculated. The observation of the BEC and superfluidity of 2D quasiparticles in graphene in a high magnetic field would be interesting confirmation of the phenomena we have described.
已经研究了不同基于石墨烯结构中的各种准粒子在高磁场中的集体性质。我们预测了双层石墨烯中二维空间间接磁激子的玻色-爱因斯坦凝聚(BEC)和超流性。超流密度和 Kosterlitz-Thouless 相变温度被证明是激子密度的增函数,是磁场和层间分离的减函数。建立了具有交替电子和空穴石墨烯层(GL)的超晶格中二维间接磁激子相互作用的基态不稳定性。考虑了由具有相反偶极矩的一对间接激子组成的稳定的二维间接磁双激子系统。获得了石墨烯超晶格中磁双激子的超流密度和 Kosterlitz-Thouless 相变温度。此外,还预测了在高磁场中嵌入半导体微腔中的 GL 中的激子极化激元的 BEC。虽然由于单层中磁激子-磁激子相互作用在高磁场极限下消失,因此这个磁激子极化激元系统中没有超流相,但计算了 BEC 形成的临界温度。在高磁场中观察到石墨烯中二维准粒子的 BEC 和超流性将是对我们所描述现象的有趣证实。