Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
Anal Chem. 2010 Apr 1;82(7):2873-8. doi: 10.1021/ac9028592.
Despite significant developments in mass spectrometry technology in recent years, no routine proteomics sequencing tool is currently available for peptide anions. The use of a molecular open-shell cation is presented here as a possible reaction partner to induce electron transfer dissociation with deprotonated peptide anions. In this negative electron transfer dissociation (NETD) scheme, an electron is abstracted from the peptide anion and transferred to the radical cation. This is demonstrated for the example of the fluoranthene cation, C(16)H(10)(+), which is reacted with deprotonated phosphorylated peptides in a 3-D ion trap mass spectrometer. Selective backbone cleavage at the C(alpha)-C bond is observed to yield a and x fragments, similarly to electron detachment dissociation (EDD) of peptide anions. Crucially, the phosphorylation site is left intact in the dissociation process, allowing an identification and localization of the post-translational modification (PTM) site. In contrast, NETD using Xe(+) as the reagent cation results in sequential neutral losses (CO(2) and H(3)PO(4)) from a/x fragments, which complicate the interpretation of the mass spectra. This difference in dissociation behavior can be understood in the framework of the reduced recombination energy of the electron transfer process for fluoranthene, which is estimated at 2.5-4.5 eV, compared to 6.7-8.7 eV for xenon. Similarly to ETD, proton transfer is found to compete with electron transfer processes in NETD. Isotope fitting of the charge-reduced species shows that in the case of fluoranthene-mediated NETD, proton transfer only accounts for <20%, whereas this process highly abundant for Xe(+) (43 and 82%). Since proton abstraction from Xe(+) is not possible, this suggests that Xe(+*) ionizes other transient species in the ion trap, which then engage in proton transfer reactions with the peptide anions.
尽管近年来质谱技术有了显著的发展,但目前还没有用于肽阴离子的常规蛋白质组学测序工具。本文提出使用分子开壳阳离子作为可能的反应伙伴,以诱导与去质子化的肽阴离子发生电子转移裂解。在这种负电子转移裂解(NETD)方案中,从肽阴离子中提取一个电子并转移到自由基阳离子。以芘阳离子,C(16)H(10)(+)为例,在三维离子阱质谱仪中与去质子化的磷酸化肽反应,证明了这一点。观察到选择性地在 C(alpha)-C 键处裂解,产生 a 和 x 片段,类似于肽阴离子的电子脱离解离(EDD)。至关重要的是,在解离过程中磷酸化位点保持完整,允许鉴定和定位翻译后修饰(PTM)位点。相比之下,使用 Xe(+)作为试剂阳离子的 NETD 导致 a/x 片段的连续中性损失(CO(2)和 H(3)PO(4)),这使质谱的解释复杂化。这种解离行为的差异可以在电子转移过程中重组能降低的框架内理解,对于芘,估计为 2.5-4.5 eV,而对于氙为 6.7-8.7 eV。与 ETD 一样,发现质子转移在 NETD 中与电子转移过程竞争。经还原电荷的物种的同位素拟合表明,在芘介导的 NETD 中,质子转移仅占<20%,而在 Xe(+)(43 和 82%)中,该过程非常丰富。由于不可能从 Xe(+)中提取质子,这表明 Xe(+*)离子化了离子阱中的其他瞬态物种,然后这些物种与肽阴离子发生质子转移反应。