Bioinformatics Research Center (BiRC), Aarhus University, Arhus, Denmark.
Mol Biol Evol. 2010 Aug;27(8):1868-76. doi: 10.1093/molbev/msq069. Epub 2010 Mar 8.
It has long been accepted that the structural constraints stemming from the 3D structure of ribosomal RNA (rRNA) lead to coevolution through compensating mutations between interacting sites. State-of-the-art methods for detecting coevolving sites, however, while reaching high levels of specificity and sensitivity for Watson-Crick (WC) pairs of the helices defining the secondary structure, only scarcely reveal tertiary interactions occurring at the level of the 3D structure. In order to understand the relative failure of coevolutionary methods to detect such interactions, we analyze 2,682 interacting sites derived from high-resolution structures, which include a comprehensive data set of rRNA sequences from Archaea and Bacteria. We report a striking difference in the amount of coevolution between WC and non-WC pairs. In order to understand this pattern, we derive fitness landscapes from the geometry of base pairing interactions and construct neutral networks of substitutions for each type of interaction. These networks show that coevolution is a property of WC pairs because, unlike non-WC pairs, their landscapes exhibit fitness valleys, a single mutation in a WC pair resulting in a fitness drop. Second, we used the inferred neutral networks to estimate the level of constraint acting on each type of base pair and show that it correlates negatively with the observed rate of substitutions for all non-WC pairs. WC pairs appear as outliers, fixing more substitutions than expected according to their level of constraint. We here propose that the rate of substitution in WC pairs is due to coevolution resulting from constraints acting at intermediate levels of organization, namely the one of the helical stem with its forming WC pairs. In agreement with this hypothesis, we report a significant excess of intrahelical, inter-WC pairs coevolution compared with interhelices pairs. Altogether, these results show that detailed biochemical knowledge is required and has to be incorporated into evolutionary reasoning in order to understand the fine patterns of variation at the molecular level. They also demonstrate that coevolutionary analysis provides almost exclusively 2D information and only little 3D signal.
长期以来,人们一直认为核糖体 RNA(rRNA)的 3D 结构所带来的结构限制导致了相互作用部位之间的补偿突变而发生共进化。然而,用于检测共进化位点的最先进方法虽然在识别定义二级结构的螺旋中的 Watson-Crick(WC)碱基对方面达到了高特异性和敏感性水平,但几乎无法揭示发生在 3D 结构水平的三级相互作用。为了了解共进化方法相对未能检测到这些相互作用的原因,我们分析了源自高分辨率结构的 2682 个相互作用位点,其中包括来自古菌和细菌的 rRNA 序列的综合数据集。我们报告了 WC 对和非 WC 对之间共进化程度的惊人差异。为了理解这种模式,我们从碱基对相互作用的几何形状中推导出适合度景观,并为每种类型的相互作用构建替代的中性网络。这些网络表明,共进化是 WC 对的一个特性,因为与非 WC 对不同,它们的景观具有适合度谷,即 WC 对中的单个突变会导致适合度下降。其次,我们使用推断出的中性网络来估计每种碱基对的约束水平,并表明它与所有非 WC 对的观察到的替换率呈负相关。WC 对表现为异常值,根据其约束水平固定的替换比预期的多。我们在这里提出,WC 对中的替换率是由于在中间组织水平(即形成 WC 对的螺旋茎)作用的约束下发生的共进化所致。与该假设一致,我们报告了与跨螺旋对相比,螺旋内、跨 WC 对的共进化存在显著过剩。总之,这些结果表明,为了理解分子水平上的细微变异模式,需要详细的生化知识,并将其纳入进化推理中。它们还表明,共进化分析几乎仅提供 2D 信息,并且仅提供很少的 3D 信号。