Suppr超能文献

K+-Cl 协同转运蛋白 KCC2 促进成熟大鼠海马中的 GABA 能兴奋。

The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus.

机构信息

Department of Biosciences, PO Box 65, FI-00014 University of Helsinki, Helsinki, Finland.

出版信息

J Physiol. 2010 May 1;588(Pt 9):1527-40. doi: 10.1113/jphysiol.2009.181826. Epub 2010 Mar 8.

Abstract

GABAergic excitatory K(+) transients can be readily evoked in the mature rat hippocampus by intense activation of GABA(A) receptors (GABA(A)Rs). Here we show that these K(+) responses induced by high-frequency stimulation or GABA(A) agonist application are generated by the neuronal K(+)-Cl() cotransporter KCC2 and that the transporter-mediated KCl extrusion is critically dependent on the bicarbonate-driven accumulation of Cl() in pyramidal neurons. The mechanism underlying GABAergic K(+) transients was studied in CA1 stratum pyramidale using intracellular sharp microelectrodes and extracellular ion-sensitive microelectrodes. The evoked K(+) transients, as well as the associated afterdischarges, were strongly suppressed by 0.5-1 mm furosemide, a KCl cotransport inhibitor. Importantly, the GABA(A)R-mediated intrapyramidal accumulation of Cl(), as measured by monitoring the reversal potential of fused IPSPs, was unaffected by the drug. It was further confirmed that the reduction in the K(+) transients was not due to effects of furosemide on the Na(+)-dependent K(+)-Cl() cotransporter NKCC1 or on intraneuronal carbonic anhydrase activity. Blocking potassium channels by Ba(2+) enhanced K(+) transients whereas pyramidal cell depolarizations were attenuated in further agreement with a lack of contribution by channel-mediated K(+) efflux. The key role of the GABA(A)R channel-mediated anion fluxes in the generation of the K(+) transients was examined in experiments where bicarbonate was replaced with formate. This anion substitution had no significant effect on the rate of Cl() accumulation, K(+) response or afterdischarges. Our findings reveal a novel excitatory mode of action of KCC2 that can have substantial implications for the role of GABAergic transmission during ictal epileptiform activity.

摘要

GABA 能性兴奋 K(+) 瞬变可通过 GABA(A) 受体(GABA(A)R)的强烈激活在成熟大鼠海马体中轻易诱发。在此,我们发现这些由高频刺激或 GABA(A) 激动剂应用引起的 K(+) 反应是由神经元 K(+)-Cl() 共转运蛋白 KCC2 产生的,并且转运蛋白介导的 KCl 外排对锥体神经元中 Cl() 的碳酸氢盐驱动积累有至关重要的依赖性。使用细胞内尖锐微电极和细胞外离子敏感微电极研究 CA1 层锥体中 GABA 能性 K(+) 瞬变的机制。诱发的 K(+) 瞬变以及相关的后放电被 0.5-1 mM 速尿(一种 KCl 共转运抑制剂)强烈抑制。重要的是,药物对 GABA(A)R 介导的细胞内 Cl() 积累(通过监测融合 IPSP 的反转电位来测量)没有影响。进一步证实,K(+) 瞬变的减少不是由于速尿对 Na(+)-依赖性 K(+)-Cl() 共转运蛋白 NKCC1 的作用或对神经元内碳酸酐酶活性的影响。通过 Ba(2+) 阻断钾通道增强了 K(+) 瞬变,而锥体细胞去极化则减弱,进一步证明了通道介导的 K(+) 外流没有贡献。通过实验检查 GABA(A)R 通道介导的阴离子通量在 K(+) 瞬变产生中的关键作用,其中用甲酸盐代替碳酸氢盐。这种阴离子取代对 Cl() 积累、K(+) 反应或后放电的速率没有显著影响。我们的发现揭示了 KCC2 的一种新的兴奋作用模式,这可能对癫痫发作样活动期间 GABA 能性传递的作用有重大影响。

相似文献

1
The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus.
J Physiol. 2010 May 1;588(Pt 9):1527-40. doi: 10.1113/jphysiol.2009.181826. Epub 2010 Mar 8.
4
Potassium-coupled chloride cotransport controls intracellular chloride in rat neocortical pyramidal neurons.
J Neurosci. 2000 Nov 1;20(21):8069-76. doi: 10.1523/JNEUROSCI.20-21-08069.2000.
5
Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII.
J Physiol. 2005 Jan 1;562(Pt 1):27-36. doi: 10.1113/jphysiol.2004.077495. Epub 2004 Nov 4.
6
Ionic mechanisms of spontaneous GABAergic events in rat hippocampal slices exposed to 4-aminopyridine.
J Neurophysiol. 1997 Nov;78(5):2582-91. doi: 10.1152/jn.1997.78.5.2582.
9
Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.
J Neurophysiol. 2000 Jan;83(1):406-17. doi: 10.1152/jn.2000.83.1.406.

引用本文的文献

2
Hippocampal Interneurons Shape Spatial Coding Alterations in Neurological Disorders.
Mol Neurobiol. 2025 May 20. doi: 10.1007/s12035-025-05020-2.
3
Modulation of Network Activity by Optogenetic Stimulation of Parvalbumin-positive Interneurons During Estrous Cycle.
Curr Neuropharmacol. 2025;23(7):862-871. doi: 10.2174/011570159X326861241129093354.
4
Rate-Dependent Depression of the Hoffmann Reflex: Practical Applications in Painful Diabetic Neuropathy.
Diabetes Metab J. 2024 Nov;48(6):1029-1046. doi: 10.4093/dmj.2024.0614. Epub 2024 Nov 21.
5
Brainstem depolarization-induced lethal apnea associated with gain-of-function is prevented by sodium channel blockade.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2309000121. doi: 10.1073/pnas.2309000121. Epub 2024 Mar 28.
6
Understanding Focal Seizures in Adults: A Comprehensive Review.
Cureus. 2023 Nov 2;15(11):e48173. doi: 10.7759/cureus.48173. eCollection 2023 Nov.
7
Unilateral optogenetic kindling of hippocampus leads to more severe impairments of the inhibitory signaling in the contralateral hippocampus.
Front Mol Neurosci. 2023 Oct 24;16:1268311. doi: 10.3389/fnmol.2023.1268311. eCollection 2023.

本文引用的文献

1
Cation-chloride cotransporters and neuronal function.
Neuron. 2009 Mar 26;61(6):820-38. doi: 10.1016/j.neuron.2009.03.003.
2
Reporting ethical matters in the Journal of Physiology: standards and advice.
J Physiol. 2009 Feb 15;587(Pt 4):713-9. doi: 10.1113/jphysiol.2008.167387.
3
Cellular and network mechanisms of electrographic seizures.
Drug Discov Today Dis Models. 2008;5(1):45-57. doi: 10.1016/j.ddmod.2008.07.005.
5
Potassium dynamics in the epileptic cortex: new insights on an old topic.
Neuroscientist. 2008 Oct;14(5):422-33. doi: 10.1177/1073858408317955.
7
Inhibition and brain work.
Neuron. 2007 Dec 6;56(5):771-83. doi: 10.1016/j.neuron.2007.11.008.
9
Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy.
J Neurosci. 2007 Sep 12;27(37):9866-73. doi: 10.1523/JNEUROSCI.2761-07.2007.
10
Carbonic anhydrase inhibitors as anticonvulsant agents.
Curr Top Med Chem. 2007;7(9):855-64. doi: 10.2174/156802607780636726.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验