Department of Biosciences, PO Box 65, FI-00014 University of Helsinki, Helsinki, Finland.
J Physiol. 2010 May 1;588(Pt 9):1527-40. doi: 10.1113/jphysiol.2009.181826. Epub 2010 Mar 8.
GABAergic excitatory K(+) transients can be readily evoked in the mature rat hippocampus by intense activation of GABA(A) receptors (GABA(A)Rs). Here we show that these K(+) responses induced by high-frequency stimulation or GABA(A) agonist application are generated by the neuronal K(+)-Cl() cotransporter KCC2 and that the transporter-mediated KCl extrusion is critically dependent on the bicarbonate-driven accumulation of Cl() in pyramidal neurons. The mechanism underlying GABAergic K(+) transients was studied in CA1 stratum pyramidale using intracellular sharp microelectrodes and extracellular ion-sensitive microelectrodes. The evoked K(+) transients, as well as the associated afterdischarges, were strongly suppressed by 0.5-1 mm furosemide, a KCl cotransport inhibitor. Importantly, the GABA(A)R-mediated intrapyramidal accumulation of Cl(), as measured by monitoring the reversal potential of fused IPSPs, was unaffected by the drug. It was further confirmed that the reduction in the K(+) transients was not due to effects of furosemide on the Na(+)-dependent K(+)-Cl() cotransporter NKCC1 or on intraneuronal carbonic anhydrase activity. Blocking potassium channels by Ba(2+) enhanced K(+) transients whereas pyramidal cell depolarizations were attenuated in further agreement with a lack of contribution by channel-mediated K(+) efflux. The key role of the GABA(A)R channel-mediated anion fluxes in the generation of the K(+) transients was examined in experiments where bicarbonate was replaced with formate. This anion substitution had no significant effect on the rate of Cl() accumulation, K(+) response or afterdischarges. Our findings reveal a novel excitatory mode of action of KCC2 that can have substantial implications for the role of GABAergic transmission during ictal epileptiform activity.
GABA 能性兴奋 K(+) 瞬变可通过 GABA(A) 受体(GABA(A)R)的强烈激活在成熟大鼠海马体中轻易诱发。在此,我们发现这些由高频刺激或 GABA(A) 激动剂应用引起的 K(+) 反应是由神经元 K(+)-Cl() 共转运蛋白 KCC2 产生的,并且转运蛋白介导的 KCl 外排对锥体神经元中 Cl() 的碳酸氢盐驱动积累有至关重要的依赖性。使用细胞内尖锐微电极和细胞外离子敏感微电极研究 CA1 层锥体中 GABA 能性 K(+) 瞬变的机制。诱发的 K(+) 瞬变以及相关的后放电被 0.5-1 mM 速尿(一种 KCl 共转运抑制剂)强烈抑制。重要的是,药物对 GABA(A)R 介导的细胞内 Cl() 积累(通过监测融合 IPSP 的反转电位来测量)没有影响。进一步证实,K(+) 瞬变的减少不是由于速尿对 Na(+)-依赖性 K(+)-Cl() 共转运蛋白 NKCC1 的作用或对神经元内碳酸酐酶活性的影响。通过 Ba(2+) 阻断钾通道增强了 K(+) 瞬变,而锥体细胞去极化则减弱,进一步证明了通道介导的 K(+) 外流没有贡献。通过实验检查 GABA(A)R 通道介导的阴离子通量在 K(+) 瞬变产生中的关键作用,其中用甲酸盐代替碳酸氢盐。这种阴离子取代对 Cl() 积累、K(+) 反应或后放电的速率没有显著影响。我们的发现揭示了 KCC2 的一种新的兴奋作用模式,这可能对癫痫发作样活动期间 GABA 能性传递的作用有重大影响。