Feit M D, Fleck J A
Appl Opt. 1979 Aug 15;18(16):2843-51. doi: 10.1364/AO.18.002843.
Methods are developed for extracting from a numerical propagating-beam solution of a scalar wave equation the information necessary to compute the impulse-response function and the pulse dispersion for a multimode graded-index fiber. It is shown that the scalar Helmholtz equation and the parabolic wave equation have the same set of eigenfunctions in common and that the eigenvalues for the two equations are simply related. Thus one can work exclusively with the simpler parabolic equation. Both the mode eigenvalues (propagation constants) and mode weights, which are necessary for determining the impulse response, can be obtained with high accuracy from a numerical Fourier transform of the complex field-correlation function by the use of digital-filtering techniques. It is shown how a solution obtained in the absence of profile dispersion can be simply corrected for the presence of profile dispersion. In an illustrative example a gradedindex fiber with a central dip in its profile is considered.
已开发出多种方法,用于从标量波动方程的数值传播光束解中提取计算多模渐变折射率光纤的脉冲响应函数和脉冲色散所需的信息。结果表明,标量亥姆霍兹方程和抛物型波动方程具有相同的一组共同本征函数,并且这两个方程的本征值具有简单的关系。因此,可以仅使用更简单的抛物型方程。通过使用数字滤波技术,从复场相关函数的数值傅里叶变换中可以高精度地获得确定脉冲响应所需的模式本征值(传播常数)和模式权重。展示了如何针对存在剖面色散的情况对在不存在剖面色散时获得的解进行简单校正。在一个示例中,考虑了一种在其剖面中有中心凹陷的渐变折射率光纤。