Suppr超能文献

β-连环蛋白缺失通过调节 Tbx1 引起 DiGeorge 综合征样表型。

Beta-catenin deficiency causes DiGeorge syndrome-like phenotypes through regulation of Tbx1.

机构信息

Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA.

出版信息

Development. 2010 Apr;137(7):1137-47. doi: 10.1242/dev.045534.

Abstract

DiGeorge syndrome (DGS) is a common genetic disease characterized by pharyngeal apparatus malformations and defects in cardiovascular, craniofacial and glandular development. TBX1 is the most likely candidate disease-causing gene and is located within a 22q11.2 chromosomal deletion that is associated with most cases of DGS. Here, we show that canonical Wnt-beta-catenin signaling negatively regulates Tbx1 expression and that mesenchymal inactivation of beta-catenin (Ctnnb1) in mice caused abnormalities within the DGS phenotypic spectrum, including great vessel malformations, hypoplastic pulmonary and aortic arch arteries, cardiac malformations, micrognathia, thymus hypoplasia and mislocalization of the parathyroid gland. In a heterozygous Fgf8 or Tbx1 genetic background, ectopic activation of Wnt-beta-catenin signaling caused an increased incidence and severity of DGS-like phenotypes. Additionally, reducing the gene dosage of Fgf8 rescued pharyngeal arch artery defects caused by loss of Ctnnb1. These findings identify Wnt-beta-catenin signaling as a crucial upstream regulator of a Tbx1-Fgf8 signaling pathway and suggest that factors that affect Wnt-beta-catenin signaling could modify the incidence and severity of DGS.

摘要

22q11.2 染色体缺失与大多数 DiGeorge 综合征(DGS)病例相关,而 TBX1 是最有可能的致病基因。我们发现经典 Wnt-β-catenin 信号通路负调控 Tbx1 表达,且 Ctnnb1(β-catenin 的一种失活形式)在间充质细胞中的缺失会导致 DGS 表型谱内的异常,包括大血管畸形、肺和主动脉弓动脉发育不全、心脏畸形、小颌畸形、胸腺发育不全和甲状旁腺异位。在杂合 Fgf8 或 Tbx1 遗传背景下,Wnt-β-catenin 信号通路的异位激活会导致 DGS 样表型的发生率和严重程度增加。此外,降低 Fgf8 的基因剂量可以挽救 Ctnnb1 缺失引起的咽弓动脉缺陷。这些发现表明 Wnt-β-catenin 信号通路是 Tbx1-Fgf8 信号通路的关键上游调控因子,并提示影响 Wnt-β-catenin 信号通路的因素可能会改变 DGS 的发生率和严重程度。

相似文献

1
Beta-catenin deficiency causes DiGeorge syndrome-like phenotypes through regulation of Tbx1.
Development. 2010 Apr;137(7):1137-47. doi: 10.1242/dev.045534.
3
Dissection of Tbx1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy.
Hum Mol Genet. 2006 Nov 1;15(21):3219-28. doi: 10.1093/hmg/ddl399. Epub 2006 Sep 25.
6
Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage.
Hum Mol Genet. 2004 Aug 1;13(15):1577-85. doi: 10.1093/hmg/ddh176. Epub 2004 Jun 9.
9
Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development.
Development. 2006 Sep;133(18):3587-95. doi: 10.1242/dev.02539. Epub 2006 Aug 16.
10
A genetic link between Tbx1 and fibroblast growth factor signaling.
Development. 2002 Oct;129(19):4605-11. doi: 10.1242/dev.129.19.4605.

引用本文的文献

1
TBX1 Functions as a Tumor Activator in Prostate Cancer by Promoting Ribosome RNA Gene Transcription.
Front Oncol. 2021 Jan 26;10:616173. doi: 10.3389/fonc.2020.616173. eCollection 2020.
2
Why Does the Face Predict the Brain? Neural Crest Induction, Craniofacial Morphogenesis, and Neural Circuit Development.
Front Physiol. 2020 Dec 11;11:610970. doi: 10.3389/fphys.2020.610970. eCollection 2020.
3
Drainage of amniotic fluid delays vocal fold separation and induces load-related vocal fold mucosa remodeling.
Dev Biol. 2020 Oct 1;466(1-2):47-58. doi: 10.1016/j.ydbio.2020.08.003. Epub 2020 Aug 7.
4
Genetics and signaling mechanisms of orofacial clefts.
Birth Defects Res. 2020 Nov;112(19):1588-1634. doi: 10.1002/bdr2.1754. Epub 2020 Jul 15.
5
Mechanisms of larynx and vocal fold development and pathogenesis.
Cell Mol Life Sci. 2020 Oct;77(19):3781-3795. doi: 10.1007/s00018-020-03506-x. Epub 2020 Apr 6.
6
Adipose TBX1 regulates β-adrenergic sensitivity in subcutaneous adipose tissue and thermogenic capacity in vivo.
Mol Metab. 2020 Jun;36:100965. doi: 10.1016/j.molmet.2020.02.008. Epub 2020 Feb 18.
8
Endodermal pouch-expressed is important for pharyngeal cartilage formation.
Biol Open. 2018 Dec 17;7(12):bio035444. doi: 10.1242/bio.035444.
9
Expression, function, and regulation of the embryonic transcription factor TBX1 in parathyroid tumors.
Lab Invest. 2017 Dec;97(12):1488-1499. doi: 10.1038/labinvest.2017.88. Epub 2017 Sep 18.
10
Mouth development.
Wiley Interdiscip Rev Dev Biol. 2017 Sep;6(5). doi: 10.1002/wdev.275. Epub 2017 May 17.

本文引用的文献

1
Retinoic acid affects craniofacial patterning by changing Fgf8 expression in the pharyngeal ectoderm.
Dev Growth Differ. 2008 Dec;50(9):717-29. doi: 10.1111/j.1440-169X.2008.01069.x.
3
An FGF-WNT gene regulatory network controls lung mesenchyme development.
Dev Biol. 2008 Jul 15;319(2):426-36. doi: 10.1016/j.ydbio.2008.04.009. Epub 2008 Jun 3.
4
The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway.
Cell Stem Cell. 2007 Aug 16;1(2):165-79. doi: 10.1016/j.stem.2007.05.018. Epub 2007 Jun 14.
6
Islet1 cardiovascular progenitors: a single source for heart lineages?
Development. 2008 Jan;135(2):193-205. doi: 10.1242/dev.001883.
8
Wnt/beta-catenin signaling and cardiogenesis: timing does matter.
Dev Cell. 2007 Jul;13(1):10-3. doi: 10.1016/j.devcel.2007.06.006.
10
Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10894-9. doi: 10.1073/pnas.0704044104. Epub 2007 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验