Russell P B, Swissler T J, McCormick M P
Appl Opt. 1979 Nov 15;18(22):3783-97. doi: 10.1364/AO.18.003783.
We present a methodology for objective and automated determination of the uncertainty in aerosol measurements made by lidar. The methodology is based on standard error-propagation procedures, a large data base on atmospheric behavior, and considerable experience in processing lidar data. It yields algebraic expressions for probable error as a function of the atmospheric, background lighting, and lidar parameters. This error includes contributions from (1) lidar signal; (2) molecular density; (3) atmospheric transmission; and (4) lidar calibration. The validity of the algebraic error expressions is tested by performing simulated measurements and analyses, in which random errors of appropriate size are injected at appropriate steps. As an example, the methodology is applied to a new airborne lidar system used for measurements of the stratospheric aerosol. It is shown that for stratospheric measurements below about 25 km, molecular density uncertainties are the dominant source of error for wavelengths shorter than about 1.1 microm during nonvolcanic conditions. Because the influence of molecular scattering (relative to particulate scattering) decreases with increasing wavelength, stratospheric measurements with a Nd:YAG lidar can thus be more accurate than those made with a ruby lidar, provided that a suitable detector is used.
我们提出了一种用于客观、自动确定激光雷达进行的气溶胶测量不确定性的方法。该方法基于标准误差传播程序、大气行为的大型数据库以及处理激光雷达数据的丰富经验。它得出了作为大气、背景照明和激光雷达参数函数的可能误差的代数表达式。此误差包括来自以下方面的贡献:(1) 激光雷达信号;(2) 分子密度;(3) 大气传输;以及 (4) 激光雷达校准。通过进行模拟测量和分析来测试代数误差表达式的有效性,在模拟测量和分析中,在适当步骤注入适当大小的随机误差。作为一个例子,该方法应用于一种用于测量平流层气溶胶的新型机载激光雷达系统。结果表明,对于低于约25公里的平流层测量,在非火山条件下,对于波长小于约1.1微米的情况,分子密度不确定性是误差的主要来源。由于分子散射(相对于颗粒散射)的影响随波长增加而减小,因此,如果使用合适的探测器,Nd:YAG激光雷达进行的平流层测量可能比红宝石激光雷达进行的测量更准确。