Suppr超能文献

在微流控通道内的纳米图案化表面上进行内皮细胞黏附实验。

Adhesion assays of endothelial cells on nanopatterned surfaces within a microfluidic channel.

机构信息

School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-742, Korea.

出版信息

Anal Chem. 2010 Apr 1;82(7):3016-22. doi: 10.1021/ac100107z.

Abstract

We present a simple analytical method to measure adhesion of human umbilical vein endothelial cells (HUVECs) and calf pulmonary artery endothelial cells (CPAEs) using nanopatterned, biodegradable poly(lactic-co-glycolic acid) (PLGA) surfaces for potential applications to artificial tissue-engineered blood vessel. Various nanostructured PLGA surfaces (350 nm wide ridges/350 nm grooves, 350 nm ridges/700 nm grooves, 350 nm ridges/1750 nm grooves, 700 nm ridges/350 nm grooves, 1050 nm ridges/350 nm grooves, 1750 nm ridges/350 nm grooves) and flat (unpatterned) surfaces were fabricated on the bottom of polydimethylsiloxane (PDMS) microfluidic channel of 2 mm width and 60 microm height by using thermal imprinting and irreversible channel bonding. To measure adhesion strength of HUVECs and CPAEs, the cells were exposed to a range of shear stress (12, 40, and 80 dyn/cm(2)) within the channels for 20 min after a preculture for 3 days and the remaining cells were counted under each condition. The highest adhesion strength was found on the surface of 700 nm wide ridges, 350 nm wide grooves for both cell types. The enhanced adhesion on nanopatterned surfaces can be attributed to two aspects: (i) contact guidance along the line direction and (ii) clustered focal adhesions. In particular, the contact guidance induced cell alignment along the line directions, which in turn lowers wall shear stress applied to the cell surface, as supported by a simple hydrodynamic model based on cell morphology.

摘要

我们提出了一种简单的分析方法,用于测量使用纳米图案化可生物降解的聚(乳酸-共-乙醇酸)(PLGA)表面的人脐静脉内皮细胞(HUVEC)和小牛肺动脉内皮细胞(CPAEs)的粘附,这对于潜在的人工组织工程血管应用非常重要。通过热压印和不可逆通道键合,在 2mm 宽和 60μm 高的聚二甲基硅氧烷(PDMS)微流控通道的底部制造了各种纳米结构的 PLGA 表面(350nm 宽的脊/350nm 槽、350nm 脊/700nm 槽、350nm 脊/1750nm 槽、700nm 脊/350nm 槽、1050nm 脊/350nm 槽、1750nm 脊/350nm 槽)和平面(无图案)表面。为了测量 HUVEC 和 CPAE 的粘附强度,在预培养 3 天后,将细胞暴露于通道内的剪切应力(12、40 和 80dyn/cm²)范围内 20min,并在每种条件下计数剩余的细胞。对于两种细胞类型,发现最高的粘附强度都在 700nm 宽脊和 350nm 宽槽的表面上。在纳米图案化表面上增强的粘附可以归因于两个方面:(i)沿直线方向的接触引导,(ii)聚集的粘着斑。特别是,接触引导沿直线方向诱导细胞对齐,这反过来又降低了施加在细胞表面上的壁剪切应力,这得到了基于细胞形态的简单流体动力学模型的支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验