Suppr超能文献

杂合 stock 大鼠:研究肾脏表型遗传的新模型。

Heterogeneous stock rats: a new model to study the genetics of renal phenotypes.

机构信息

Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

出版信息

Am J Physiol Renal Physiol. 2010 Jun;298(6):F1484-91. doi: 10.1152/ajprenal.00002.2010. Epub 2010 Mar 10.

Abstract

Chronic kidney disease is a growing medical concern, with an estimated 25.6 million people in the United States exhibiting some degree of kidney injury and/or decline in kidney function. Animal models provide great insight into the study of the genetics of complex diseases. In particular, heterogeneous stock (HS) rats represent a unique genetic resource enabling rapid fine-mapping of complex traits. However, they have not been explored as a model to study renal phenotypes. To evaluate the usefulness of HS rats in the genetics of renal traits, a time course evaluation (weeks 8-40) was performed for several renal phenotypes. As expected, a large degree of variation was seen for most renal traits. By week 24, three (of 40) rats exhibited marked proteinuria that increased gradually until week 40 and ranged from 33.7 to 80.2 mg/24 h. Detailed histological analysis confirmed renal damage in these rats. In addition, several rats consistently exhibited significant hematuria (5/41). Interestingly, these rats were not the same rats that exhibited proteinuria, indicating that susceptibility to different types of kidney injury is likely segregating within the HS population. One HS rat exhibited unilateral renal agenesis (URA), which was accompanied by a significant degree of proteinuria and glomerular and tubulointerstitial injury. The parents of this HS rat were identified and bred further. Additional offspring of this pair were observed to exhibit URA at frequency between 40% and 60%. In summary, these novel data demonstrate that HS rats exhibit variation in proteinuria and other kidney-related traits, confirming that the model harbors susceptibility alleles for kidney injury and providing the basis for further genetic studies.

摘要

慢性肾脏病是一个日益严重的医学问题,据估计,美国有 2560 万人患有不同程度的肾脏损伤和/或肾功能下降。动物模型为复杂疾病的遗传学研究提供了重要的见解。特别是,异质品系(HS)大鼠代表了一种独特的遗传资源,能够快速精细地对复杂性状进行定位。然而,它们尚未被探索作为研究肾脏表型的模型。为了评估 HS 大鼠在肾脏表型遗传学研究中的有用性,对几种肾脏表型进行了为期 8-40 周的时间进程评估。正如预期的那样,大多数肾脏表型都存在很大程度的差异。到第 24 周,有 3 只(40 只中的 3 只)大鼠出现明显的蛋白尿,逐渐增加,直到第 40 周,范围从 33.7 到 80.2mg/24h。详细的组织学分析证实了这些大鼠的肾脏损伤。此外,有几只大鼠持续出现明显的血尿(41 只中的 5 只)。有趣的是,这些大鼠不是出现蛋白尿的相同大鼠,这表明对不同类型的肾损伤的易感性可能在 HS 群体中分离。一只 HS 大鼠出现单侧肾发育不全(URA),伴有明显程度的蛋白尿和肾小球和肾小管间质损伤。这只 HS 大鼠的父母被鉴定并进一步繁殖。这对夫妇的其他后代也观察到 URA 的发生率在 40%到 60%之间。总之,这些新数据表明,HS 大鼠在蛋白尿和其他肾脏相关性状方面存在差异,证实了该模型携带有肾脏损伤的易感等位基因,并为进一步的遗传研究提供了基础。

相似文献

1
Heterogeneous stock rats: a new model to study the genetics of renal phenotypes.
Am J Physiol Renal Physiol. 2010 Jun;298(6):F1484-91. doi: 10.1152/ajprenal.00002.2010. Epub 2010 Mar 10.
2
Genetic etiology of renal agenesis: fine mapping of Renag1 and identification of Kit as the candidate functional gene.
PLoS One. 2015 Feb 18;10(2):e0118147. doi: 10.1371/journal.pone.0118147. eCollection 2015.
3
Investigating the effect of genetic background on proteinuria and renal injury using two hypertensive strains.
Am J Physiol Renal Physiol. 2009 Apr;296(4):F839-46. doi: 10.1152/ajprenal.90370.2008. Epub 2009 Jan 28.
4
Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat.
Hypertension. 2012 Nov;60(5):1157-68. doi: 10.1161/HYPERTENSIONAHA.112.199240. Epub 2012 Sep 17.
5
Mapping genetic determinants of kidney damage in rat models.
Hypertens Res. 2012 Jul;35(7):675-94. doi: 10.1038/hr.2012.77. Epub 2012 May 31.
7
Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.
Bone. 2011 May 1;48(5):1169-77. doi: 10.1016/j.bone.2011.02.009. Epub 2011 Feb 18.
8
The Power of the Heterogeneous Stock Rat Founder Strains in Modeling Metabolic Disease.
Endocrinology. 2023 Nov 2;164(12). doi: 10.1210/endocr/bqad157.
9
Hypertensive renal disease: susceptibility and resistance in inbred hypertensive rat lines.
J Hypertens. 2013 Oct;31(10):2050-9. doi: 10.1097/HJH.0b013e328362f9a5.
10
Angiostatin overexpression is associated with an improvement in chronic kidney injury by an anti-inflammatory mechanism.
Am J Physiol Renal Physiol. 2009 Jan;296(1):F145-52. doi: 10.1152/ajprenal.90430.2008. Epub 2008 Oct 29.

引用本文的文献

1
Dissociation of intake and incentive sensitization during intermittent- and continuous-access heroin self-administration in rats.
Psychopharmacology (Berl). 2025 Apr;242(4):867-883. doi: 10.1007/s00213-025-06762-6. Epub 2025 Feb 21.
2
Modeling Brain Gene Expression in Alcohol Use Disorder with Genetic Animal Models.
Curr Top Behav Neurosci. 2023 Nov 21. doi: 10.1007/7854_2023_455.
4
A generic hidden Markov model for multiparent populations.
G3 (Bethesda). 2022 Feb 4;12(2). doi: 10.1093/g3journal/jkab396.
5
Nephron-deficient HSRA rats exhibit renal injury with age but have limited renal damage from streptozotocin-induced hyperglycemia.
Am J Physiol Renal Physiol. 2021 Jun 1;320(6):F1093-F1105. doi: 10.1152/ajprenal.00487.2020. Epub 2021 Apr 12.
6
Bisphenol F Exposure in Adolescent Heterogeneous Stock Rats Affects Growth and Adiposity.
Toxicol Sci. 2021 May 27;181(2):246-261. doi: 10.1093/toxsci/kfab035.
8
High-fat diet negatively impacts both metabolic and behavioral health in outbred heterogeneous stock rats.
Physiol Genomics. 2020 Sep 1;52(9):379-390. doi: 10.1152/physiolgenomics.00018.2020. Epub 2020 Jul 20.
9
Using Genetic and Species Diversity to Tackle Kidney Disease.
Trends Genet. 2020 Jul;36(7):499-509. doi: 10.1016/j.tig.2020.04.001. Epub 2020 Apr 30.
10
Whole genome sequencing and novel candidate genes for CAKUT and altered nephrogenesis in the HSRA rat.
Physiol Genomics. 2020 Jan 1;52(1):56-70. doi: 10.1152/physiolgenomics.00112.2019. Epub 2019 Dec 16.

本文引用的文献

1
Integrating human and rodent data to identify the genetic factors involved in chronic kidney disease.
J Am Soc Nephrol. 2010 Mar;21(3):398-405. doi: 10.1681/ASN.2009080881. Epub 2010 Feb 4.
2
Fine-mapping a locus for glucose tolerance using heterogeneous stock rats.
Physiol Genomics. 2010 Mar 3;41(1):102-8. doi: 10.1152/physiolgenomics.00178.2009. Epub 2010 Jan 12.
3
Cell and molecular biology of kidney development.
Semin Nephrol. 2009 Jul;29(4):321-37. doi: 10.1016/j.semnephrol.2009.03.009.
4
Distinct genetic regulation of progression of diabetes and renal disease in the Goto-Kakizaki rat.
Physiol Genomics. 2009 Sep 9;39(1):38-46. doi: 10.1152/physiolgenomics.90389.2008. Epub 2009 Jul 7.
5
Multiple loci associated with indices of renal function and chronic kidney disease.
Nat Genet. 2009 Jun;41(6):712-7. doi: 10.1038/ng.377. Epub 2009 May 10.
6
Investigating the effect of genetic background on proteinuria and renal injury using two hypertensive strains.
Am J Physiol Renal Physiol. 2009 Apr;296(4):F839-46. doi: 10.1152/ajprenal.90370.2008. Epub 2009 Jan 28.
8
MYH9 is associated with nondiabetic end-stage renal disease in African Americans.
Nat Genet. 2008 Oct;40(10):1185-92. doi: 10.1038/ng.232. Epub 2008 Sep 14.
9
Renal agenesis and unilateral nephrectomy: what are the risks of living with a single kidney?
Pediatr Nephrol. 2009 Mar;24(3):439-46. doi: 10.1007/s00467-008-0924-9. Epub 2008 Jul 9.
10
Actin -related protein 3 (Arp3) is mutated in proteinuric BUF/Mna rats.
Mamm Genome. 2008 Jan;19(1):41-50. doi: 10.1007/s00335-007-9078-5. Epub 2007 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验