Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
J Neurosci. 2010 Mar 10;30(10):3589-99. doi: 10.1523/JNEUROSCI.3732-09.2010.
It has been established that regulation of chromatin structure through post-translational modification of histone proteins, primarily histone H3 phosphorylation and acetylation, is an important early step in the induction of synaptic plasticity and formation of long-term memory. In this study, we investigated the contribution of another histone modification, histone methylation, to memory formation in the adult hippocampus. We found that trimethylation of histone H3 at lysine 4 (H3K4), an active mark for transcription, is upregulated in hippocampus 1 h following contextual fear conditioning. In addition, we found that dimethylation of histone H3 at lysine 9 (H3K9), a molecular mark associated with transcriptional silencing, is increased 1 h after fear conditioning and decreased 24 h after context exposure alone and contextual fear conditioning. Trimethylated H3K4 levels returned to baseline levels at 24 h. We also found that mice deficient in the H3K4-specific histone methyltransferase, Mll, displayed deficits in contextual fear conditioning relative to wild-type animals. This suggests that histone methylation is required for proper long-term consolidation of contextual fear memories. Interestingly, inhibition of histone deacetylases (HDACs) with sodium butyrate (NaB) resulted in increased H3K4 trimethylation and decreased H3K9 dimethylation in hippocampus following contextual fear conditioning. Correspondingly, we found that fear learning triggered increases in H3K4 trimethylation at specific gene promoter regions (Zif268 and bdnf) with altered DNA methylation and MeCP2 DNA binding. Zif268 DNA methylation levels returned to baseline at 24 h. Together, these data demonstrate that histone methylation is actively regulated in the hippocampus and facilitates long-term memory formation.
已经证实,通过组蛋白蛋白的翻译后修饰(主要是组蛋白 H3 的磷酸化和乙酰化)来调节染色质结构,是诱导突触可塑性和形成长期记忆的重要早期步骤。在这项研究中,我们研究了另一种组蛋白修饰——组蛋白甲基化对成年海马体记忆形成的贡献。我们发现,组蛋白 H3 赖氨酸 4 (H3K4)的三甲基化,这是转录的一个活性标记,在情境性恐惧条件反射后 1 小时内海马体上调。此外,我们发现,组蛋白 H3 赖氨酸 9 (H3K9)的二甲基化,与转录沉默相关的分子标记,在恐惧条件反射后 1 小时增加,而在仅暴露于上下文和情境性恐惧条件反射后 24 小时减少。三甲基化 H3K4 水平在 24 小时后恢复到基线水平。我们还发现,与野生型动物相比,H3K4 特异性组蛋白甲基转移酶 Mll 缺失的小鼠在情境性恐惧条件反射中表现出缺陷。这表明组蛋白甲基化是正确的长期巩固情境性恐惧记忆所必需的。有趣的是,用丁酸钠(NaB)抑制组蛋白去乙酰化酶(HDACs)可导致在经历情境性恐惧条件反射后海马体中 H3K4 三甲基化增加和 H3K9 二甲基化减少。相应地,我们发现恐惧学习触发了特定基因启动子区域(Zif268 和 bdnf)的 H3K4 三甲基化增加,同时伴随着 DNA 甲基化和 MeCP2 DNA 结合的改变。Zif268 的 DNA 甲基化水平在 24 小时后恢复到基线。总之,这些数据表明组蛋白甲基化在海马体中被积极调节,并促进长期记忆形成。