Suppr超能文献

结构证据表明绿色荧光蛋白生色团生物合成中的脱水中间产物。

Structural evidence for a dehydrated intermediate in green fluorescent protein chromophore biosynthesis.

机构信息

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 GSP, Moscow V-437, Russia.

出版信息

J Biol Chem. 2010 May 21;285(21):15978-84. doi: 10.1074/jbc.M109.092320. Epub 2010 Mar 9.

Abstract

The acGFPL is the first-identified member of a novel, colorless and non-fluorescent group of green fluorescent protein (GFP)-like proteins. Its mutant aceGFP, with Gly replacing the invariant catalytic Glu-222, demonstrates a relatively fast maturation rate and bright green fluorescence (lambda(ex) = 480 nm, lambda(em) = 505 nm). The reverse G222E single mutation in aceGFP results in the immature, colorless variant aceGFP-G222E, which undergoes irreversible photoconversion to a green fluorescent state under UV light exposure. Here we present a high resolution crystallographic study of aceGFP and aceGFP-G222E in the immature and UV-photoconverted states. A unique and striking feature of the colorless aceGFP-G222E structure is the chromophore in the trapped intermediate state, where cyclization of the protein backbone has occurred, but Tyr-66 still stays in the native, non-oxidized form, with C(alpha) and C(beta) atoms in the sp(3) hybridization. This experimentally observed immature aceGFP-G222E structure, characterized by the non-coplanar arrangement of the imidazolone and phenolic rings, has been attributed to one of the intermediate states in the GFP chromophore biosynthesis. The UV irradiation (lambda = 250-300 nm) of aceGFP-G222E drives the chromophore maturation further to a green fluorescent state, characterized by the conventional coplanar bicyclic structure with the oxidized double Tyr-66 C(alpha)=C(beta) bond and the conjugated system of pi-electrons. Structure-based site-directed mutagenesis has revealed a critical role of the proximal Tyr-220 in the observed effects. In particular, an alternative reaction pathway via Tyr-220 rather than conventional wild type Glu-222 has been proposed for aceGFP maturation.

摘要

acGFPL 是第一个被鉴定的新型无色非荧光绿色荧光蛋白(GFP)样蛋白家族成员。它的突变体 aceGFP,用 Gly 取代了不变的催化 Glu-222,显示出相对较快的成熟速度和明亮的绿色荧光(lambda(ex) = 480nm,lambda(em) = 505nm)。aceGFP 中的反向 G222E 单点突变导致不成熟的无色变体 aceGFP-G222E,在暴露于紫外光下时,它会不可逆地光转化为绿色荧光状态。在这里,我们呈现了 aceGFP 和 aceGFP-G222E 在不成熟和 UV 光转化状态下的高分辨率晶体结构研究。无色 aceGFP-G222E 结构的一个独特而引人注目的特征是处于被捕获的中间状态的生色团,其中蛋白质骨架已经发生环化,但 Tyr-66 仍然保持在天然的非氧化形式,C(alpha)和 C(beta)原子处于 sp(3)杂化状态。这种实验观察到的不成熟的 aceGFP-G222E 结构,其特征是咪唑啉酮和酚环的非共面排列,被归因于 GFP 生色团生物合成的中间状态之一。aceGFP-G222E 的紫外光(lambda = 250-300nm)照射进一步驱动生色团成熟到绿色荧光状态,其特征是具有传统的共面双环结构,氧化的双 Tyr-66 C(alpha)=C(beta)键和共轭的 pi 电子系统。基于结构的定点突变揭示了近端 Tyr-220 在观察到的效应中的关键作用。特别是,已经提出了一种通过 Tyr-220 而不是传统野生型 Glu-222 的替代反应途径来实现 aceGFP 成熟。

相似文献

1
Structural evidence for a dehydrated intermediate in green fluorescent protein chromophore biosynthesis.
J Biol Chem. 2010 May 21;285(21):15978-84. doi: 10.1074/jbc.M109.092320. Epub 2010 Mar 9.
6
Crystal structure of the fluorescent protein from Dendronephthya sp. in both green and photoconverted red forms.
Acta Crystallogr D Struct Biol. 2016 Aug;72(Pt 8):922-32. doi: 10.1107/S205979831601038X. Epub 2016 Jul 13.
7
Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21097-102. doi: 10.1073/pnas.0909204106. Epub 2009 Nov 23.
8
10
Structure of the green fluorescent protein NowGFP with an anionic tryptophan-based chromophore.
Acta Crystallogr D Biol Crystallogr. 2015 Aug;71(Pt 8):1699-707. doi: 10.1107/S1399004715010159. Epub 2015 Jul 31.

引用本文的文献

1
Decoding mEos4b day-long maturation and engineering fast-maturing variants.
Protein Sci. 2025 Aug;34(8):e70234. doi: 10.1002/pro.70234.
5
Amino acid residue at the 165th position tunes EYFP chromophore maturation. A structure-based design.
Comput Struct Biotechnol J. 2021 May 11;19:2950-2959. doi: 10.1016/j.csbj.2021.05.017. eCollection 2021.
7
Enhanced X-ray diffraction of in vivo-grown μNS crystals by viscous jets at XFELs.
Acta Crystallogr F Struct Biol Commun. 2020 Jun 1;76(Pt 6):278-289. doi: 10.1107/S2053230X20006172. Epub 2020 May 29.
9
Structural Factors Enabling Successful GFP-Like Proteins with Alanine as the Third Chromophore-Forming Residue.
J Mol Biol. 2019 Mar 29;431(7):1397-1408. doi: 10.1016/j.jmb.2019.02.013. Epub 2019 Feb 22.
10
Signal Discrimination Between Fluorescent Proteins in Live Cells by Long-wavelength Optical Modulation.
J Phys Chem Lett. 2012 Dec 6;3(23):3585-3591. doi: 10.1021/jz3016414. Epub 2012 Nov 19.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structure and mechanism of the photoactivatable green fluorescent protein.
J Am Chem Soc. 2009 Apr 1;131(12):4176-7. doi: 10.1021/ja808851n.
3
Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants.
Biochemistry. 2008 Sep 23;47(38):10111-22. doi: 10.1021/bi8007164. Epub 2008 Aug 30.
4
Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing.
Annu Rev Biomed Eng. 2008;10:1-38. doi: 10.1146/annurev.bioeng.010308.161731.
5
Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard.
Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):61-9. doi: 10.1107/S090744490705024X. Epub 2007 Dec 5.
6
An alternative excited-state proton transfer pathway in green fluorescent protein variant S205V.
Protein Sci. 2007 Dec;16(12):2703-10. doi: 10.1110/ps.073112007. Epub 2007 Oct 26.
7
Fluorescent proteins: maturation, photochemistry and photophysics.
Curr Opin Struct Biol. 2006 Dec;16(6):714-21. doi: 10.1016/j.sbi.2006.10.001. Epub 2006 Oct 24.
9
Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis.
J Am Chem Soc. 2006 Mar 15;128(10):3166-8. doi: 10.1021/ja0552693.
10
Fluorescent proteins as a toolkit for in vivo imaging.
Trends Biotechnol. 2005 Dec;23(12):605-13. doi: 10.1016/j.tibtech.2005.10.005. Epub 2005 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验