Suppr超能文献

蛋白质二级结构预测

Protein secondary structure prediction.

作者信息

Pirovano Walter, Heringa Jaap

机构信息

Centre for Integrative Bioinformatics VU, VU University, Amsterdam, The Netherlands.

出版信息

Methods Mol Biol. 2010;609:327-48. doi: 10.1007/978-1-60327-241-4_19.

Abstract

While the prediction of a native protein structure from sequence continues to remain a challenging problem, over the past decades computational methods have become quite successful in exploiting the mechanisms behind secondary structure formation. The great effort expended in this area has resulted in the development of a vast number of secondary structure prediction methods. Especially the combination of well-optimized/sensitive machine-learning algorithms and inclusion of homologous sequence information has led to increased prediction accuracies of up to 80%. In this chapter, we will first introduce some basic notions and provide a brief history of secondary structure prediction advances. Then a comprehensive overview of state-of-the-art prediction methods will be given. Finally, we will discuss open questions and challenges in this field and provide some practical recommendations for the user.

摘要

虽然从序列预测天然蛋白质结构仍然是一个具有挑战性的问题,但在过去几十年中,计算方法在探索二级结构形成背后的机制方面已经相当成功。在这一领域付出的巨大努力已经促成了大量二级结构预测方法的发展。特别是优化良好/灵敏的机器学习算法与同源序列信息的结合,使得预测准确率提高到了80%。在本章中,我们将首先介绍一些基本概念,并简要回顾二级结构预测的进展历史。然后将全面概述当前最先进的预测方法。最后,我们将讨论该领域的开放性问题和挑战,并为用户提供一些实用建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验