Dipartimento di Ingegneria delle Acque e di Chimica del Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy.
J Am Chem Soc. 2010 Apr 7;132(13):4752-65. doi: 10.1021/ja909747r.
The phosphinito-bridged Pt(I) complex (PHCy(2))Pt(mu-PCy(2)){kappa(2)P,O-mu-P(O)Cy(2)}Pt(PHCy(2)) (1) reversibly adds H(2) under ambient conditions, giving cis-(H)(PHCy(2))Pt(1)(mu-PCy(2))(mu-H)Pt(2)(PHCy(2)){kappaP-P(O)Cy(2)} (2). Complex 2 slowly isomerizes spontaneously into the corresponding more stable isomer trans-(PHCy(2))(H)Pt(mu-PCy(2))(mu-H)Pt(PHCy(2)){kappaP-P(O)Cy(2)} (3). DFT calculations indicate that the reaction of 1 with H(2) occurs through an initial heterolytic splitting of the H(2) molecule assisted by the phosphinito oxygen with breaking of the Pt-O bond and hydrogenation of the Pt and O atoms, leading to the formation of the intermediate (PHCy(2))(H)Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(OH)Cy(2)} (D), where the two split hydrogen atoms interact within a six-membered Pt-H...H-O-P-Pt ring. Compound D is a labile intermediate which easily evolves into the final dihydride complex 2 through a facile (9-15 kcal mol(-1), depending on the solvent) hydrogen shift from the phosphinito oxygen to the Pt-Pt bond. Information obtained by addition of para-H(2) on 1 are in agreement with the presence of a heterolytic pathway in the 1 --> 2 transformation. NMR experiments and DFT calculations also gave evidence for the nonclassical dihydrogen complex (PHCy(2))(eta(2)-H(2))Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(O)Cy(2)} (4), which is an intermediate in the dehydrogenation of 2 to 1 and is also involved in intramolecular and intermolecular exchange processes. Experimental and DFT studies showed that the isomerization 2 --> 3 occurs via an intramolecular mechanism essentially consisting of the opening of the Pt-Pt bond and of the hydrogen bridge followed by the rotation of the coordination plane of the Pt center with the terminal hydride ligand.
膦桥联 Pt(I)配合物(PHCy(2))Pt(mu-PCy(2)){kappa(2)P,O-mu-P(O)Cy(2)}Pt(PHCy(2))(1)在环境条件下可逆地添加 H(2),生成顺式(H)(PHCy(2))Pt(1)(mu-PCy(2))(mu-H)Pt(2)(PHCy(2)){kappaP-P(O)Cy(2)}(2)。配合物 2 会自发缓慢地异构化为相应更稳定的异构体反式(PHCy(2))(H)Pt(mu-PCy(2))(mu-H)Pt(PHCy(2)){kappaP-P(O)Cy(2)}(3)。DFT 计算表明,1 与 H(2)的反应通过膦氧辅助的 H(2)分子的初始异裂发生,导致 Pt-O 键断裂,Pt 和 O 原子加氢,形成中间体(PHCy(2))(H)Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(OH)Cy(2)}(D),其中两个分裂的氢原子在一个六元 Pt-H...H-O-P-Pt 环内相互作用。化合物 D 是一种不稳定的中间体,很容易通过膦桥氧到 Pt-Pt 键的易于(9-15 kcal mol(-1),取决于溶剂)氢转移,进化为最终的二氢化物配合物 2。加入 para-H(2)对 1 的信息与 1 到 2 的转化中的异裂途径的存在一致。NMR 实验和 DFT 计算也为非经典二氢配合物(PHCy(2))(eta(2)-H(2))Pt(mu-PCy(2))Pt(PHCy(2)){kappaP-P(O)Cy(2)}(4)提供了证据,它是 2 脱氢为 1 的中间体,也参与了分子内和分子间的交换过程。实验和 DFT 研究表明,异构化 2 --> 3 通过基本上由 Pt-Pt 键的打开和氢键的打开以及末端氢化物配体的 Pt 中心的配位平面的旋转组成的分子内机制发生。