Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
Neuron. 2010 Mar 11;65(5):706-17. doi: 10.1016/j.neuron.2010.02.021.
A canonical feedforward circuit is proposed to underlie sensory cortical responses with balanced excitation and inhibition in layer 4 (L4). However, in another input layer, L6, sensory responses and the underlying synaptic circuits remain largely unclear. Here, cell-attached recordings in rat primary auditory cortex revealed that for the majority of L6 excitatory neurons, tonal stimuli did not drive spike responses, but suppressed spontaneous firings. Whole-cell recordings further revealed that the silencing resulted from tone-evoked strong inhibition arriving earlier than excitation. This pattern of inputs can be attributed to a parallel feedforward circuit with both excitatory and inhibitory inputs disynaptically relayed. In contrast, in the other neurons directly driven by thalamic input, stimuli evoked excitation preceding relatively weak inhibition, resulting in robust spike responses. Thus, the dichotomy of L6 response properties arises from two distinct patterns of excitatory-inhibitory interplay. The parallel circuit module generating preceding inhibition may provide a gating mechanism for conditional corticothalamic feedback.
提出了一个规范的前馈电路,以在第 4 层(L4)中实现平衡的兴奋和抑制来为感觉皮层反应提供基础。然而,在另一个输入层 L6 中,感觉反应和潜在的突触回路在很大程度上仍不清楚。在这里,在大鼠初级听觉皮层的细胞附着记录中发现,对于大多数 L6 兴奋性神经元,音调刺激不会驱动尖峰反应,而是抑制自发放电。全细胞记录进一步表明,这种抑制是由比兴奋更早到达的音调诱发的强烈抑制引起的。这种输入模式可以归因于一种平行的前馈电路,其中兴奋性和抑制性输入以双突触方式传递。相比之下,在由丘脑输入直接驱动的其他神经元中,刺激引发了相对较弱的抑制之前的兴奋,从而产生了强烈的尖峰反应。因此,L6 反应特性的二分法源于两种不同的兴奋-抑制相互作用模式。产生前抑制的平行电路模块可能为条件性皮质丘脑反馈提供门控机制。