Radiology (IMH), Faculty of Health Sciences, Linköping University, Linköping, Sweden.
Br J Radiol. 2010 Sep;83(993):767-75. doi: 10.1259/bjr/35254923. Epub 2010 Mar 11.
For visual grading experiments, which are an easy and increasingly popular way of studying image quality, hitherto used data analysis methods are often inadequate. Visual grading analysis makes assumptions that are not statistically appropriate for ordinal data, and visual grading characteristic curves are difficult to apply in more complex experimental designs. The approach proposed in this paper, visual grading regression (VGR), consists of an established statistical technique, ordinal logistic regression, applied to data from single-image and image-pair experiments with visual grading scores selected on an ordinal scale. The approach is applicable for situations in which, for example, the effects of the choice of imaging equipment and post-processing method are to be studied simultaneously, while controlling for potentially confounding variables such as patient and observer identity. The analysis can be performed with standard statistical software packages using straightforward coding of the data. We conclude that the proposed statistical technique is useful in a wide range of visual grading studies.
对于视觉分级实验,这是一种研究图像质量的简单而越来越流行的方法,迄今为止使用的数据分析方法往往不够充分。视觉分级分析做出了一些假设,这些假设在统计学上不适用于有序数据,并且视觉分级特征曲线在更复杂的实验设计中难以应用。本文提出的方法,即视觉分级回归(VGR),由一种已建立的统计技术——有序逻辑回归组成,该技术应用于单图像和图像对实验的数据,其中视觉分级评分在有序尺度上选择。该方法适用于例如,同时研究成像设备和后处理方法选择的效果,同时控制患者和观察者身份等潜在混杂变量的情况。该分析可以使用标准统计软件包使用数据的直接编码进行。我们得出结论,所提出的统计技术在广泛的视觉分级研究中非常有用。