Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
Dis Model Mech. 2010 May-Jun;3(5-6):386-96. doi: 10.1242/dmm.003715. Epub 2010 Mar 11.
Movement disorders represent a significant societal burden for which therapeutic options are limited and focused on treating disease symptomality. Early-onset torsion dystonia (EOTD) is one such disorder characterized by sustained and involuntary muscle contractions that frequently cause repetitive movements or abnormal postures. Transmitted in an autosomal dominant manner with reduced penetrance, EOTD is caused in most cases by the deletion of a glutamic acid (DeltaE) in the DYT1 (also known as TOR1A) gene product, torsinA. Although some patients respond well to anticholingerics, therapy is primarily limited to either neurosurgery or chemodenervation. As mutant torsinA (DeltaE) expression results in decreased torsinA function, therapeutic strategies directed toward enhancement of wild-type (WT) torsinA activity in patients who are heterozygous for mutant DYT1 may restore normal cellular functionality. Here, we report results from the first-ever screen for candidate small molecule therapeutics for EOTD, using multiple activity-based readouts for torsinA function in Caenorhabditis elegans, subsequent validation in human DYT1 patient fibroblasts, and behavioral rescue in a mouse model of DYT1 dystonia. We exploited the nematode to rapidly discern chemical effectors of torsinA and identified two classes of antibiotics, quinolones and aminopenicillins, which enhance WT torsinA activity in two separate in vivo assays. Representative molecules were assayed in EOTD patient fibroblasts for improvements in torsinA-dependent secretory function, which was improved significantly by ampicillin. Furthermore, a behavioral defect associated with an EOTD mouse knock-in model was also rescued following administration of ampicillin. These combined data indicate that specific small molecules that enhance torsinA activity represent a promising new approach toward therapeutic development for EOTD, and potentially for other diseases involving the processing of mutant proteins.
运动障碍代表着重大的社会负担,而治疗选择有限,主要集中在治疗疾病症状上。早发性扭转痉挛(EOTD)就是这样一种疾病,其特征是持续的、不由自主的肌肉收缩,经常导致重复性运动或异常姿势。EOTD 以常染色体显性方式遗传,外显率降低,大多数情况下是由于 DYT1(也称为 TOR1A)基因产物 torsinA 中的谷氨酸(DeltaE)缺失引起的。虽然一些患者对抗胆碱性药物反应良好,但治疗主要限于神经外科或化学神经切断术。由于突变 torsinA(DeltaE)的表达导致 torsinA 功能降低,因此针对杂合突变 DYT1 患者的野生型(WT)torsinA 活性增强的治疗策略可能恢复正常的细胞功能。在这里,我们报告了首次针对 EOTD 的候选小分子治疗药物的筛选结果,使用了基于活性的多种读数来检测 Caenorhabditis elegans 中的 torsinA 功能,随后在人类 DYT1 患者成纤维细胞中进行了验证,并在 DYT1 扭转型运动障碍的小鼠模型中进行了行为挽救。我们利用线虫快速辨别 torsinA 的化学效应物,并确定了两类抗生素,喹诺酮类和氨基青霉素类,它们在两种独立的体内测定中增强了 WT torsinA 的活性。代表性分子在 EOTD 患者成纤维细胞中进行了测试,以改善依赖 torsinA 的分泌功能,氨苄青霉素显著改善了该功能。此外,在给予氨苄青霉素后,与 EOTD 小鼠敲入模型相关的行为缺陷也得到了挽救。这些综合数据表明,增强 torsinA 活性的特定小分子代表了治疗 EOTD 以及可能涉及突变蛋白处理的其他疾病的有前途的新方法。