Suppr超能文献

收缩性心力衰竭患者室性心律失常的危险分层。

Risk stratification of ventricular arrhythmias in patients with systolic heart failure.

机构信息

Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

出版信息

Curr Opin Cardiol. 2010 May;25(3):268-75. doi: 10.1097/HCO.0b013e3283387a73.

Abstract

PURPOSE OF REVIEW

Sudden cardiac death (SCD) accounts for an estimated 310 000 deaths in the United States each year. Implantable cardioverter defibrillator (ICD) implantation has revolutionized SCD prevention in heart failure patients, but only a minority of patients with ICDs receive appropriate therapy for ventricular arrhythmias. At present, the selection of patients for ICD is based largely on left ventricular ejection fraction and heart failure, but further risk stratification is still needed to determine which patients will derive the greatest benefit.

RECENT FINDINGS

Multicenter studies have failed to confirm the utility of microvolt T-wave alternans to predict ventricular arrhythmias in patients with ICDs. Additional risk stratification tools including resting ECG characteristics, nonsustained ventricular tachycardia, tests of autonomic function, and cardiac MRI demonstrate predictive value but have limited clinical applicability at present.

SUMMARY

Depressed ejection fraction with symptomatic heart failure remains the most powerful predictor of SCD and is the primary method currently used in patient care decisions. Progress continues in evaluation of additional risk factors and risk stratification tools, but no one test or combination of tests is definitive for prediction of arrhythmic events.

摘要

目的综述

在美国,每年约有 31 万人死于心源性猝死 (SCD)。植入式心脏复律除颤器 (ICD) 的植入彻底改变了心力衰竭患者 SCD 的预防,但只有少数 ICD 患者接受了适当的室性心律失常治疗。目前,ICD 患者的选择主要基于左心室射血分数和心力衰竭,但仍需要进一步的风险分层来确定哪些患者将从中获得最大益处。

最新发现

多中心研究未能证实微伏 T 波交替预测 ICD 患者室性心律失常的效用。其他风险分层工具,包括静息心电图特征、非持续性室性心动过速、自主神经功能测试和心脏 MRI,具有预测价值,但目前在临床应用上具有一定局限性。

总结

伴有症状性心力衰竭的射血分数降低仍然是 SCD 的最有力预测因素,也是目前患者护理决策中最主要的方法。目前,人们继续评估其他危险因素和风险分层工具,但没有一项测试或测试组合可以明确预测心律失常事件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验