Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue,Pittsburgh, Pennsylvania 15213, USA.
Inorg Chem. 2010 Apr 5;49(7):3387-401. doi: 10.1021/ic902516r.
The synthesis and crystallographic characterization of a new family of M(mu-CN)Ln complexes are reported. Two structural series have been prepared by reacting in water rare earth nitrates (Ln(III) = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho) with K(3)[M(CN)(6)] (M(III) = Fe, Co) in the presence of hexamethylenetetramine (hmt). The first series consists of six isomorphous heterobinuclear complexes, [(CN)(5)M-CN-Ln(H(2)O)(8)].2hmt ([FeLa] 1, [FePr] 2, [FeNd] 3, [FeSm] 4, [FeEu] 5, [FeGd] 6), while the second series consists of four isostructural ionic complexes, [M(CN)(6)][Ln(H(2)O)(8)].hmt ([FeDy] 7, [FeHo] 8, [CoEu] 9, [CoGd] 10). The hexamethylenetetramine molecules contribute to the stabilization of the crystals by participating in an extended network of hydrogen bond interactions. In both series the aqua ligands are hydrogen bonded to the nitrogen atoms from both the terminal CN(-) groups and the hmt molecules. The [FeGd] complex has been analyzed with (57)Fe Mossbauer spectroscopy and magnetic susceptibility measurements. We have also analyzed the [FeLa] complex, in which the paramagnetic Gd(III) is replaced by diamagnetic La(III), with (57)Fe Mossbauer spectroscopy, electron paramagnetic resonance (EPR), and magnetic susceptibility measurements, to obtain information about the low-spin Fe(III) site that is not accessible in the presence of a paramagnetic ion at the complementary site. For the same reason, the [CoGd] complex, containing diamagnetic Co(III), was studied with EPR and magnetic susceptibility measurements, which confirmed the S = 7/2 spin of Gd(III). Prior knowledge about the paramagnetic sites in [FeGd] allows a detailed analysis of the exchange interactions between them. In particular, the question of whether the exchange interaction in [FeGd] is isotropic or anisotropic has been addressed. Standard variable-temperature magnetic susceptibility measurements provide only the value for a linear combination of J(x), J(y), and J(z) but contain no information about the values of the individual exchange parameters J(x), J(y), and J(z). In contrast, the spin-Hamiltonian analysis of the variable-field, variable-temperature Mossbauer spectra reveals an exquisite sensitivity on the anisotropic exchange parameters. Analysis of these dependencies in conjunction with adopting the g-values obtained for [FeLa], yielded the values J(x) = +0.11 cm(-1), J(y) = +0.33 cm(-1), and J(z) = +1.20 cm(-1) (S(1).J.S(2) convention). The consistency of these results with magnetic susceptibility data is analyzed. The exchange anisotropy is rooted in the spatial anisotropy of the low-spin Fe(III) ion. The condition for anisotropic exchange is the presence of low-lying orbital excited states at the ferric site that (i) effectively interact through spin-orbit coupling with the orbital ground state and (ii) have an exchange parameter with the Gd site with a value different from that for the ground state. Density functional theory (DFT) calculations, without spin-orbit coupling, reveal that the unpaired electron of the t(2g)(5) ground configuration of the Fe(III) ion occupies the xy orbital, that is, the orbital along the plane perpendicular to the Fe...Gd vector. The exchange-coupling constants for this orbital, j(xy), and for the other t(2g) orbitals, j(yz) and j(xz), have been determined using a theoretical model that relates them to the anisotropic exchange parameters and the g-values of Fe(III). The resulting values, j(yz) = -5.7 cm(-1), j(xz) = -4.9 cm(-1), and j(xy) = +0.3 cm(-1) are quite different. The origin of the difference is briefly discussed.
报告了一类新的 M(mu-CN)Ln 配合物的合成和晶体化学特征。通过在水相中反应稀土硝酸盐(Ln(III) = La、Pr、Nd、Sm、Eu、Gd、Dy、Ho)与 K(3)[M(CN)(6)](M(III) = Fe、Co),在六亚甲基四胺(hmt)的存在下制备了两个结构系列。第一个系列由六个同构异双核配合物组成,[(CN)(5)M-CN-Ln(H(2)O)(8)].2hmt ([FeLa]1、[FePr]2、[FeNd]3、[FeSm]4、[FeEu]5、[FeGd]6),而第二个系列由四个同构离子配合物组成,[M(CN)(6)][Ln(H(2)O)(8)].hmt ([FeDy]7、[FeHo]8、[CoEu]9、[CoGd]10)。六亚甲基四胺分子通过参与氢键相互作用的扩展网络来稳定晶体。在两个系列中,水配体通过与端 CN(-) 基团和 hmt 分子的氮原子形成氢键与水配位。[FeGd] 配合物已通过 57Fe 穆斯堡尔光谱和磁化率测量进行了分析。我们还分析了 [FeLa] 配合物,其中顺磁 Gd(III) 被反磁 La(III) 取代,通过 57Fe 穆斯堡尔光谱、电子顺磁共振(EPR)和磁化率测量获得有关低自旋 Fe(III) 位的信息,该位在互补位存在顺磁离子时无法获得。出于同样的原因,含有反磁 Co(III) 的[CoGd] 配合物也通过 EPR 和磁化率测量进行了研究,这证实了 Gd(III) 的 S = 7/2 自旋。关于 [FeGd] 中顺磁位点的先验知识允许对它们之间的交换相互作用进行详细分析。特别是,是否存在交换相互作用是各向同性还是各向异性的问题已得到解决。标准变温磁化率测量仅提供 J(x)、J(y) 和 J(z) 的线性组合的值,但不包含有关各个交换参数 J(x)、J(y) 和 J(z) 值的信息。相比之下,变磁场、变温穆斯堡尔光谱的自旋哈密顿分析对各向异性交换参数具有极高的灵敏度。分析这些依赖关系并采用[FeLa]获得的 g 值,得出了 J(x) = +0.11 cm(-1)、J(y) = +0.33 cm(-1) 和 J(z) = +1.20 cm(-1)(S(1).J.S(2) 公约)的值。这些结果与磁化率数据的一致性进行了分析。交换各向异性源于低自旋 Fe(III) 离子的空间各向异性。各向异性交换的条件是铁位存在低能轨道激发态,这些激发态(i)通过自旋轨道耦合有效地与轨道基态相互作用,(ii)与 Gd 位具有与基态不同的值的交换参数。没有自旋轨道耦合的密度泛函理论(DFT)计算表明,Fe(III) 离子的 t(2g)(5) 基组态的未配对电子占据 xy 轨道,即垂直于 Fe...Gd 矢量的平面中的轨道。通过将它们与各向异性交换参数和 Fe(III) 的 g 值相关联的理论模型,确定了 xy 轨道(j(xy))和其他 t(2g)轨道(j(yz) 和 j(xz))的交换耦合常数。得到的值 j(yz) = -5.7 cm(-1)、j(xz) = -4.9 cm(-1) 和 j(xy) = +0.3 cm(-1) 非常不同。简要讨论了差异的起源。