Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
J Biol Chem. 2010 May 7;285(19):14572-84. doi: 10.1074/jbc.M109.080028. Epub 2010 Mar 14.
We have solved the crystal structure of a segment of nonerythroid alpha-spectrin (alphaII) consisting of the first 147 residues to a resolution of 2.3 A. We find that the structure of this segment is generally similar to a corresponding segment from erythroid alpha-spectrin (alphaI) but exhibits unique differences with functional significance. Specific features include the following: (i) an irregular and frayed first helix (Helix C'); (ii) a helical conformation in the junction region connecting Helix C' with the first structural domain (D1); (iii) a long A(1)B(1) loop in D1; and (iv) specific inter-helix hydrogen bonds/salt bridges that stabilize D1. Our findings suggest that the hydrogen bond networks contribute to structural domain stability, and thus rigidity, in alphaII, and the lack of such hydrogen bond networks in alphaI leads to flexibility in alphaI. We have previously shown the junction region connecting Helix C' to D1 to be unstructured in alphaI (Park, S., Caffrey, M. S., Johnson, M. E., and Fung, L. W. (2003) J. Biol. Chem. 278, 21837-21844) and now find it to be helical in alphaII, an important difference for alpha-spectrin association with beta-spectrin in forming tetramers. Homology modeling and molecular dynamics simulation studies of the structure of the tetramerization site, a triple helical bundle of partial domain helices, show that mutations in alpha-spectrin will affect Helix C' structural flexibility and/or the junction region conformation and may alter the equilibrium between spectrin dimers and tetramers in cells. Mutations leading to reduced levels of functional tetramers in cells may potentially lead to abnormal neuronal functions.
我们已经解析了一段长度为 147 个残基的非红细胞α- spectrin(αII)的晶体结构,分辨率达到 2.3Å。我们发现该片段的结构通常与红细胞α- spectrin(αI)的相应片段相似,但具有功能意义上的独特差异。具体特征包括以下几点:(i)不规则且磨损的第一螺旋(C'螺旋);(ii)连接 C'螺旋与第一个结构域(D1)的连接区呈螺旋构象;(iii)D1 中具有长的 A1B1 环;(iv)特定的螺旋间氢键/盐桥,稳定 D1。我们的研究结果表明,氢键网络有助于αII 结构域的稳定性和刚性,而αI 中缺乏这种氢键网络导致αI 的灵活性。我们之前已经表明,连接 C'螺旋和 D1 的连接区在αI 中没有结构(Park,S.,Caffrey,M. S.,Johnson,M. E.,和 Fung,L. W.(2003)J. Biol. Chem. 278,21837-21844),现在发现它在αII 中呈螺旋状,这对于α- spectrin与β- spectrin形成四聚体的结合是一个重要的区别。同源建模和分子动力学模拟研究表明,四聚化位点的结构,即部分结构域螺旋的三螺旋束,突变会影响 C'螺旋的结构灵活性和/或连接区构象,并可能改变细胞中 spectrin 二聚体和四聚体之间的平衡。导致细胞中功能性四聚体水平降低的突变可能导致神经元功能异常。