Autism Consortium, Boston, Massachusetts, USA.
Pediatrics. 2010 Apr;125(4):e727-35. doi: 10.1542/peds.2009-1684. Epub 2010 Mar 15.
Multiple lines of evidence indicate a strong genetic contribution to autism spectrum disorders (ASDs). Current guidelines for clinical genetic testing recommend a G-banded karyotype to detect chromosomal abnormalities and fragile X DNA testing, but guidelines for chromosomal microarray analysis have not been established.
A cohort of 933 patients received clinical genetic testing for a diagnosis of ASD between January 2006 and December 2008. Clinical genetic testing included G-banded karyotype, fragile X testing, and chromosomal microarray (CMA) to test for submicroscopic genomic deletions and duplications. Diagnostic yield of clinically significant genetic changes was compared.
Karyotype yielded abnormal results in 19 of 852 patients (2.23% [95% confidence interval (CI): 1.73%-2.73%]), fragile X testing was abnormal in 4 of 861 (0.46% [95% CI: 0.36%-0.56%]), and CMA identified deletions or duplications in 154 of 848 patients (18.2% [95% CI: 14.76%-21.64%]). CMA results for 59 of 848 patients (7.0% [95% CI: 5.5%-8.5%]) were considered abnormal, which includes variants associated with known genomic disorders or variants of possible significance. CMA results were normal in 10 of 852 patients (1.2%) with abnormal karyotype due to balanced rearrangements or unidentified marker chromosome. CMA with whole-genome coverage and CMA with targeted genomic regions detected clinically relevant copy-number changes in 7.3% (51 of 697) and 5.3% (8 of 151) of patients, respectively, both higher than karyotype. With the exception of recurrent deletion and duplication of chromosome 16p11.2 and 15q13.2q13.3, most copy-number changes were unique or identified in only a small subset of patients.
CMA had the highest detection rate among clinically available genetic tests for patients with ASD. Interpretation of microarray data is complicated by the presence of both novel and recurrent copy-number variants of unknown significance. Despite these limitations, CMA should be considered as part of the initial diagnostic evaluation of patients with ASD.
多项证据表明,自闭症谱系障碍(ASD)存在强烈的遗传因素。目前的临床基因检测指南建议进行 G 带核型分析以检测染色体异常和脆性 X DNA 检测,但尚未制定染色体微阵列分析的指南。
2006 年 1 月至 2008 年 12 月期间,对 933 名接受 ASD 临床基因检测的患者进行了队列研究。临床基因检测包括 G 带核型分析、脆性 X 检测和染色体微阵列(CMA),以检测亚微观基因组缺失和重复。比较了具有临床意义的遗传变化的诊断产量。
核型在 852 名患者中的 19 名中出现异常(2.23%[95%置信区间(CI):1.73%-2.73%]),脆性 X 检测在 861 名患者中的 4 名中异常(0.46%[95%CI:0.36%-0.56%]),CMA 在 848 名患者中的 154 名中检测到缺失或重复(18.2%[95%CI:14.76%-21.64%])。CMA 结果在 848 名患者中的 59 名(7.0%[95%CI:5.5%-8.5%])被认为异常,其中包括与已知基因组疾病相关的变体或可能具有重要意义的变体。由于平衡重排或未识别的标记染色体,10 名核型异常(1.2%)的 852 名患者的 CMA 结果正常。全基因组覆盖的 CMA 和靶向基因组区域的 CMA 分别在 7.3%(51 名患者中的 697 名)和 5.3%(151 名患者中的 8 名)的患者中检测到临床相关的拷贝数变化,均高于核型。除 16p11.2 和 15q13.2q13.3 染色体的反复缺失和重复外,大多数拷贝数变化是独特的或仅在一小部分患者中发现。
CMA 是 ASD 患者临床可用基因检测中检测率最高的方法。微阵列数据的解释受到具有未知意义的新型和反复出现的拷贝数变异的影响。尽管存在这些限制,但 CMA 应作为 ASD 患者初始诊断评估的一部分考虑。