Department of Materials Science and Technology, National Chung Hsing University, Taichung 40227, Taiwan.
Langmuir. 2010 Jun 15;26(12):10177-82. doi: 10.1021/la100313j.
Self-assembled rodlike (0.3-2.5 microm in diameter and 5.3-31 microm in length) and disklike microstructures (1.8-10.6 microm in width and 0.1-1.0 microm in thickness) are uniquely present in amorphous clay aggregates. Clay units were prepared by intercalation of Na(+)-montmorillonite (Na(+)-MMT) with copper ions (Cu(2+)) and poly(oxypropylene)-amine salt (POP) in simultaneous or stepwise ionic exchange reactions. Differences in process control during incorporation of Cu(2+) and hydrophobic POP greatly affected the layer structure of the clay units (d spacing of 12-53 A) and consequently their amphiphilic dispersion properties. By controlling the dispersion in water and drying at 80 degrees C, highly ordered self-assembly structures were obtained, presumably as a result of self-piling of clay units in competing vertical and horizontal directions. In general, association with Cu(2+) yielded units with a disklike microstructure, in contrast to the rod-like structure obtained for POP-intercalated clay. The self-assembled structures were characterized using X-ray diffraction, UV adsorption, thermal gravimetric analysis, zeta potential, scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques. Control of the clay self-piling process provides a new synthetic route for the fabrication of bottom-up microstructures that are potentially useful for templates, sensors, and electronic devices.
独特地存在于无定形粘土聚集体中的自组装棒状(直径为 0.3-2.5 微米,长度为 5.3-31 微米)和盘状微结构(宽度为 1.8-10.6 微米,厚度为 0.1-1.0 微米)。粘土单元通过将 Na(+)-蒙脱石 (Na(+)-MMT) 与铜离子 (Cu(2+)) 和聚氧丙烯-胺盐 (POP) 在同时或分步离子交换反应中进行插层而制备。在掺入 Cu(2+)和疏水性 POP 的过程中控制差异极大地影响了粘土单元的层结构(间距为 12-53 A),从而影响了它们的两亲分散性能。通过控制在水中的分散性并在 80°C 下干燥,可以获得高度有序的自组装结构,这可能是由于粘土单元在竞争的垂直和水平方向上的自堆积所致。一般来说,与 Cu(2+) 结合生成具有盘状微观结构的单元,而与 POP 插层粘土相比,得到的是棒状结构。使用 X 射线衍射、紫外吸收、热重分析、ζ 电位、扫描电子显微镜和能量色散 X 射线光谱技术对自组装结构进行了表征。控制粘土自堆积过程为制造可能对模板、传感器和电子设备有用的自下而上的微观结构提供了一种新的合成途径。