Suppr超能文献

临床显著的白色念珠菌中 micafungin 耐药性涉及葡聚糖合酶催化亚基 GSC1 (FKS1) 等位基因的修饰,随后是杂合性丢失。

Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity.

机构信息

Department of Oral Sciences, University of Otago, 310 Great King St, Dunedin 9054, New Zealand.

出版信息

J Antimicrob Chemother. 2010 May;65(5):842-52. doi: 10.1093/jac/dkq073. Epub 2010 Mar 16.

Abstract

OBJECTIVES

To determine the mechanism of intermediate- and high-level echinocandin resistance, resulting from heterozygous and homozygous mutations in GSC1 (FKS1), in both laboratory-generated and clinical isolates of Candida albicans.

METHODS

The DNA sequences of the entire open reading frames of GSC1, GSL1 (FKS3) and RHO1, which may contribute to the beta-1,3-glucan synthase of a micafungin-susceptible strain and a resistant clinical isolate, were compared. A spontaneous heterozygous mutant isolated by selection for micafungin resistance, and a panel of laboratory-generated homozygous and heterozygous mutants that possessed combinations of the echinocandin-susceptible and -resistant alleles, or mutants with individual GSC1 alleles deleted, were used to compare levels of echinocandin resistance and inhibition of glucan synthase activity.

RESULTS

DNA sequence analysis identified a mutation, S645P, in both alleles of GSC1 from the clinical isolate. GSL1 had two homozygous amino acid changes and five non-synonymous nucleotide polymorphisms due to allelic variation. The predicted amino acid sequence of Rho1p was conserved between strains. Reconstruction of the heterozygous (S645/S645F) and homozygous (S645F/S645F) mutation showed that the homozygous mutation conferred a higher level of micafungin resistance (4 mg/L) than the heterozygous mutation (1 mg/L). Exposure of the heterozygous mutant to micafungin resulted in a loss of heterozygosity. Kinetic analysis of beta-1,3-glucan synthase activity showed that the homozygous and heterozygous mutations gave echinocandin susceptibility profiles that correlated with their MIC values.

CONCLUSIONS

A homozygous hot-spot mutation in GSC1, caused by mutation in one allele and then loss of heterozygosity, is required for high-level echinocandin resistance in C. albicans. Both alleles of GSC1 contribute equally and independently to beta-1,3-glucan synthase activity.

摘要

目的

确定源于 GSC1(FKS1)杂合和纯合突变的中间和高水平棘白菌素耐药的机制,这些突变存在于实验室产生的和临床分离的白念珠菌中。

方法

比较了对米卡芬净敏感的菌株和耐药临床分离株的整个 GSC1、GSL1(FKS3)和 RHO1 的开放阅读框的 DNA 序列。通过选择米卡芬净耐药性分离出的自发杂合突变体,以及一组具有棘白菌素敏感性和耐药性等位基因组合的实验室产生的杂合和纯合突变体,或具有单个 GSC1 等位基因缺失的突变体,用于比较棘白菌素耐药水平和对葡聚糖合酶活性的抑制作用。

结果

DNA 序列分析鉴定出临床分离株 GSC1 的两个等位基因均存在 S645P 突变。GSL1 由于等位基因变异而具有两个纯合氨基酸变化和五个非同义核苷酸多态性。两种菌株之间 Rho1p 的预测氨基酸序列是保守的。杂合(S645/S645F)和纯合(S645F/S645F)突变的重建表明,纯合突变赋予米卡芬净更高的耐药性(4mg/L),而杂合突变(1mg/L)。杂合突变体暴露于米卡芬净导致杂合性丧失。β-1,3-葡聚糖合酶活性的动力学分析表明,杂合和纯合突变赋予棘白菌素敏感性谱与其 MIC 值相关。

结论

GSC1 中的一个等位基因突变导致的热点突变导致了白念珠菌中高水平棘白菌素耐药,然后杂合性丧失。GSC1 的两个等位基因均平等且独立地对β-1,3-葡聚糖合酶活性有贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验