Suppr超能文献

人工神经网络中地形规律的自主进化。

Autonomous evolution of topographic regularities in artificial neural networks.

机构信息

Evolutionary Complexity Research Group, School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA.

出版信息

Neural Comput. 2010 Jul;22(7):1860-98. doi: 10.1162/neco.2010.06-09-1042.

Abstract

Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.

摘要

受自然启发,神经进化(NE)领域的研究人员至少在过去 25 年中一直在开发专门用于进化人工神经网络(ANNs)的进化算法。然而,通过 NE 算法进化而来的 ANNs 缺乏生物大脑的独特特征,这也许可以解释为什么 NE 还不是神经计算的主流学科。受此差距的启发,本研究表明,当通过基于超立方体的拓扑结构增强神经进化算法将几何形状引入到进化的 ANNs 中时,它们开始获得确实类似于生物大脑的特征。也就是说,如果进化的 ANNs 中的神经元位于空间中的位置(即,如果给它们坐标),那么,正如本研究中在进化国际象棋游戏的 ANNs 的实验所示,具有对称性和规律性的地形图可以自发进化。本研究表明,这种进化地图的能力提供了重要的泛化优势。事实上,进化出的地图具有足够的信息量,其分析产生了一个新的见解,即更一般的玩家的连接模式的几何形状比不太一般的玩家的连接模式更平滑、更连续。因此,研究结果揭示了连接模式的一般性和平滑性之间的相关性。它们还暗示了一个有趣的可能性,即随着 NE 作为一个领域的成熟,它的算法可以进化出对一般研究神经计算的人来说越来越相关的 ANNs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验