Department of Physiology, University of Tübingen, Tübingen, Germany.
Am J Physiol Cell Physiol. 2010 Jul;299(1):C111-8. doi: 10.1152/ajpcell.00477.2009. Epub 2010 Mar 17.
Blood passing the renal medulla enters a strongly hypertonic environment challenging functional properties and survival of blood cells. In erythrocytes, exposure to hyperosmotic shock stimulates Ca(2+) entry and ceramide formation with subsequent cell membrane scrambling, an effect partially reversed by high concentrations of Cl(-) or urea. Cell membrane scrambling with phosphatidylserine exposure is part of the procoagulant phenotype of platelets. Coagulation in the hypertonic renal medulla would jeopardize blood flow in the vasa recta. The present study thus explored whether hypertonic environment and urea modify phosphatidylserine exposure of human platelets. FACS analysis was employed to estimate cytosolic Ca(2+) activity with Fluo3 fluorescence, ceramide formation, P-selectin, and glycoprotein IIb/IIIa activation with fluorescent antibodies and phosphatidylserine exposure with annexin V-binding. The spontaneous platelet aggregation was measured by impedance aggregometry. Hyperosmotic shock (addition of 500 mM sucrose or 250 mM NaCl) significantly enhanced cytosolic Ca(2+) activity, ceramide formation, phosphatidylserine exposure, platelet degranulation, and aggregability. Addition of 500 mM urea to isotonic saline did not significantly modify cytosolic Ca(2+) activity, ceramide abundance, or annexin V-binding but significantly blunted the respective effects of hypertonic shock following addition of 500 mM sucrose. In isotonic solutions, both ceramide (20 microM) and Ca(2+) ionophore ionomycin (0.5 microM) increased annexin V-binding, effects again significantly blunted by 500 mM urea. Moreover, oxidative stress by addition of 0.5 mM peroxynitrite increased cytosolic Ca(2+) activity and triggered annexin V-binding, effects again blunted in the presence of 500 mM urea. The observations reveal that hyperosmotic shock and oxidative stress trigger a procoagulant platelet phenotype, an effect blunted by the presence of high urea concentrations.
血液穿过肾髓质进入高度高渗环境,这对血细胞的功能特性和生存构成挑战。在红细胞中,暴露于高渗冲击会刺激 Ca(2+) 内流和神经酰胺形成,随后导致细胞膜翻转,这一效应可部分被高浓度 Cl(-) 或尿素逆转。细胞膜翻转伴随着磷脂酰丝氨酸暴露是血小板促凝表型的一部分。在高渗肾髓质中的凝血会危及直小血管中的血流。因此,本研究探讨了高渗环境和尿素是否会改变人血小板的磷脂酰丝氨酸暴露。通过流式细胞术分析用 Fluo3 荧光来估计细胞内 Ca(2+) 活性,用荧光抗体来估计神经酰胺形成、P-选择素和糖蛋白 IIb/IIIa 活化,用 annexin V 结合来估计磷脂酰丝氨酸暴露。通过阻抗聚集度测定法来测量自发血小板聚集。高渗冲击(添加 500mM 蔗糖或 250mM NaCl)显著增强细胞内 Ca(2+) 活性、神经酰胺形成、磷脂酰丝氨酸暴露、血小板脱颗粒和聚集性。在等渗盐水中添加 500mM 尿素不会显著改变细胞内 Ca(2+) 活性、神经酰胺丰度或 annexin V 结合,但会显著减弱添加 500mM 蔗糖后的高渗冲击的相应效应。在等渗溶液中,神经酰胺(20μM)和 Ca(2+) 离子载体离子霉素(0.5μM)均增加 annexin V 结合,这两种效应在存在 500mM 尿素时再次显著减弱。此外,通过添加 0.5mM 过氧亚硝酸盐引起的氧化应激增加细胞内 Ca(2+) 活性并触发 annexin V 结合,这一效应在存在 500mM 尿素时再次减弱。这些观察结果表明,高渗冲击和氧化应激引发促凝血小板表型,而高浓度尿素的存在会减弱这种效应。