Suppr超能文献

视杆细胞型视网膜营养不良不会与环核苷酸门控通道的β亚基相互作用。

RDS in cones does not interact with the beta subunit of the cyclic nucleotide gated channel.

机构信息

Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.

出版信息

Adv Exp Med Biol. 2010;664:63-70. doi: 10.1007/978-1-4419-1399-9_8.

Abstract

Retinal degeneration slow (RDS) is a photoreceptor specific tetraspanin membrane protein. It is expressed in the rim region of rod outer segment (OS) discs and cone OS lamellae. Mutations in RDS cause both rod and cone-dominant retinal degenerations. We have recently shown that RDS functions differently in rods vs. cones, and have used the cone-dominant nrl ( -/- ) and rod-dominant wild-type (WT) murine retinas to study these differences and help understand the mechanism of rod and cone OS biogenesis. We hypothesize that the differential role of RDS in rods vs. cones is in part related to differences in RDS binding partners. RDS has been shown to bind to the GARP portion of the beta subunit of the rod-cyclic nucleotide gated (CNG) channel. This interaction has been hypothesized to play a role in anchoring the disc rim to the rod plasma membrane. In this study we show that RDS does not interact with the cone CNG. Given that cone lamellae are not entirely encased in plasma membrane and therefore may have different anchoring requirements compared with rods, this observation may help explain some of the differential behavior of RDS in rods vs. cones.

摘要

视网膜退行性缓慢(RDS)是一种感光细胞特异性四跨膜蛋白。它在视杆外节(OS)盘的边缘区域和视锥 OS 薄片中表达。RDS 突变会导致视杆和视锥主导的视网膜变性。我们最近表明,RDS 在视杆细胞和视锥细胞中的功能不同,并使用视锥细胞主导的 nrl(-/-)和视杆细胞主导的野生型(WT)鼠视网膜来研究这些差异,以帮助理解视杆和视锥 OS 发生的机制。我们假设 RDS 在视杆细胞和视锥细胞中的差异作用部分与 RDS 结合伴侣的差异有关。已经表明 RDS 与视杆细胞环核苷酸门控(CNG)通道β亚基的 GARP 部分结合。这种相互作用被假设在将盘边缘锚定到视杆细胞膜上发挥作用。在这项研究中,我们表明 RDS 不会与视锥 CNG 相互作用。鉴于视锥薄片不完全被质膜包裹,因此与视杆细胞相比,可能具有不同的锚定要求,这一观察结果可能有助于解释 RDS 在视杆细胞和视锥细胞中的差异行为。

相似文献

1
RDS in cones does not interact with the beta subunit of the cyclic nucleotide gated channel.
Adv Exp Med Biol. 2010;664:63-70. doi: 10.1007/978-1-4419-1399-9_8.
3
Differences in RDS trafficking, assembly and function in cones versus rods: insights from studies of C150S-RDS.
Hum Mol Genet. 2010 Dec 15;19(24):4799-812. doi: 10.1093/hmg/ddq410. Epub 2010 Sep 21.
5
Cyclic GMP-gated channel and peripherin/rds-rom-1 complex of rod cells.
Novartis Found Symp. 1999;224:249-61; discussion 261-4. doi: 10.1002/9780470515693.ch14.
6
The R172W mutation in peripherin/rds causes a cone-rod dystrophy in transgenic mice.
Hum Mol Genet. 2004 Sep 15;13(18):2075-87. doi: 10.1093/hmg/ddh211. Epub 2004 Jul 14.
7
Varying the GARP2-to-RDS Ratio Leads to Defects in Rim Formation and Rod and Cone Function.
Invest Ophthalmol Vis Sci. 2015 Dec;56(13):8187-98. doi: 10.1167/iovs.15-17785.
9
Role of RDS and Rhodopsin in Cngb1-Related Retinal Degeneration.
Invest Ophthalmol Vis Sci. 2016 Mar;57(3):787-97. doi: 10.1167/iovs.15-18516.
10
Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors.
J Cell Biol. 2006 Apr 10;173(1):59-68. doi: 10.1083/jcb.200509036. Epub 2006 Apr 3.

引用本文的文献

2
The K153Del PRPH2 mutation differentially impacts photoreceptor structure and function.
Hum Mol Genet. 2016 Aug 15;25(16):3500-3514. doi: 10.1093/hmg/ddw193. Epub 2016 Jun 29.
3
Molecular basis for photoreceptor outer segment architecture.
Prog Retin Eye Res. 2016 Nov;55:52-81. doi: 10.1016/j.preteyeres.2016.05.003. Epub 2016 Jun 1.
4
PRPH2/RDS and ROM-1: Historical context, current views and future considerations.
Prog Retin Eye Res. 2016 May;52:47-63. doi: 10.1016/j.preteyeres.2015.12.002. Epub 2016 Jan 8.
5
Varying the GARP2-to-RDS Ratio Leads to Defects in Rim Formation and Rod and Cone Function.
Invest Ophthalmol Vis Sci. 2015 Dec;56(13):8187-98. doi: 10.1167/iovs.15-17785.
6
Structural and functional relationships between photoreceptor tetraspanins and other superfamily members.
Cell Mol Life Sci. 2012 Apr;69(7):1035-47. doi: 10.1007/s00018-011-0736-0. Epub 2011 Jun 8.
7
Differences in RDS trafficking, assembly and function in cones versus rods: insights from studies of C150S-RDS.
Hum Mol Genet. 2010 Dec 15;19(24):4799-812. doi: 10.1093/hmg/ddq410. Epub 2010 Sep 21.

本文引用的文献

2
Outer segment oligomerization of Rds: evidence from mouse models and subcellular fractionation.
Biochemistry. 2008 Jan 29;47(4):1144-56. doi: 10.1021/bi701807c. Epub 2008 Jan 3.
4
Glutamic acid-rich proteins of rod photoreceptors are natively unfolded.
J Biol Chem. 2006 Jan 20;281(3):1449-60. doi: 10.1074/jbc.M505012200. Epub 2005 Nov 9.
5
Protein-protein interactions in the tetraspanin web.
Physiology (Bethesda). 2005 Aug;20:218-24. doi: 10.1152/physiol.00015.2005.
8
Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain.
Annu Rev Cell Dev Biol. 2003;19:397-422. doi: 10.1146/annurev.cellbio.19.111301.153609.
9
Functional domains in tetraspanin proteins.
Trends Biochem Sci. 2003 Feb;28(2):106-12. doi: 10.1016/S0968-0004(02)00014-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验