State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China.
Nanotechnology. 2010 Apr 16;21(15):155201. doi: 10.1088/0957-4484/21/15/155201. Epub 2010 Mar 19.
Three photovoltaic-applicable donor-acceptor (D-A) alternating copolymers including poly{(9,9-dihexyl-9H-fluorene-2,7-ylene)-alt-2-(2,6-bis((E)-2-(5-bromo-3,4-dihexylthiophen-2-yl)vinyl)-4H-pyran-4-ylidene) malononitrile} (PFTMT), poly{(10-hexyl-10H-phenothiazine-3,7-ylene)-alt-2-(2,6-bis((E)-2-(5-bromo-3,4-dihexylthiophen-2-yl)vinyl)-4H-pyran-4-ylidene) malononitrile} (PPTMT) and poly{(2,20-bithiophene-5,50-ylene)-alt-2-(2,6-bis((E)-2-(5-bromo-3,4-dihexylthiophen-2-yl)vinyl)-4H-pyran-4-ylidene)malononitrile} (PDTTMT), were blended with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) to serve as active layers for photovoltaic applications. The effects of extrinsic (blend ratio and solvent) and intrinsic factors (donor materials) on the morphologies of this series of active layers were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). It was found that the PFTMT:PCBM active layers show distinct phase segregation with large PCBM clusters above 100 nm and are strongly affected by solvent evaporation rate in higher blend ratios. In contrast, the PPTMT:PCBM active layers are homogeneous and not affected by blend ratios and solvents, while the PDTTMT:PCBM active layers show an interpenetrating network initially formed at the blend ratio of 1:1. These results indicate that the polymer-PCBM repulsions arising from the molecular structure of the polymers play a significant role in determining the resulting morphologies of the blend films. Strong PFTMT-PCBM repulsion leads to large-scale phase segregation, while weak repulsions in PPTMT-PCBM and PDTTMT-PCBM favor small-scale phase segregation only. The best photovoltaic power conversion efficiencies are obtained from PDTTMT-based solar cells with the PDTTMT:PCBM blend ratio of 1:3 and nanoscale phase separation of the active layer, where a good balance is formed between a large donor-acceptor interface and the continuous paths of donor and acceptor phase for opposite charge carrier transport to their corresponding electrodes.
三种适用于光伏的供体-受体(D-A)交替共聚物,包括聚{(9,9-二己基-9H-芴-2,7-亚基)-交替-2-(2,6-双((E)-2-(5-溴-3,4-二己基噻吩-2-基)乙烯基)-4H-吡喃-4-基)丙二腈}(PFTMT)、聚{(10-己基-10H-吩噻嗪-3,7-亚基)-交替-2-(2,6-双((E)-2-(5-溴-3,4-二己基噻吩-2-基)乙烯基)-4H-吡喃-4-基)丙二腈}(PPTMT)和聚{(2,20-联噻吩-5,50-亚基)-交替-2-(2,6-双((E)-2-(5-溴-3,4-二己基噻吩-2-基)乙烯基)-4H-吡喃-4-基)丙二腈}(PDTTMT),与[6,6]-苯基-C(61)-丁酸甲酯(PCBM)混合作为光伏应用的活性层。通过原子力显微镜(AFM)和透射电子显微镜(TEM)研究了外(混合比和溶剂)和内(供体材料)因素对这一系列活性层形态的影响。结果发现,PFTMT:PCBM 活性层表现出明显的相分离,PCBM 团簇大于 100nm,并且在较高的混合比下强烈受到溶剂蒸发速率的影响。相比之下,PPTMT:PCBM 活性层是均匀的,不受混合比和溶剂的影响,而 PDTTMT:PCBM 活性层在混合比为 1:1 时最初形成互穿网络。这些结果表明,聚合物-PCBM 排斥力源于聚合物的分子结构,在决定共混膜的最终形态方面起着重要作用。强 PFTMT-PCBM 排斥力导致大规模相分离,而 PPTMT-PCBM 和 PDTTMT-PCBM 中的弱排斥力仅有利于小规模相分离。基于 PDTTMT 的太阳能电池具有最佳的光伏功率转换效率,其 PDTTMT:PCBM 混合比为 1:3,活性层具有纳米级相分离,其中供体-受体界面较大,供体和受体相的连续路径有利于相反电荷载流子向相应电极的传输,形成良好的平衡。