Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA.
J Phys Chem B. 2010 Apr 15;114(14):4896-903. doi: 10.1021/jp9095375.
A forefront of the research on Alzheimer's disease (AD) is the interaction of amyloid beta (Abeta) peptides with redox metal ions (e.g., Cu(II), Fe(III), and Fe(II)) and the biological relevance of the Abeta-metal complexes to neuronal cell loss and homeostasis of essential metals and other cellular species. This work is concerned with the kinetic and mechanistic studies of the ascorbic acid oxidation reaction by molecular oxygen that is facilitated by Cu(II) complexes with Abeta(1-16), Abeta(1-42), and aggregates of Abeta(1-42). The reaction rate was found to linearly increase with the concentrations of Abeta-Cu(II) and dissolved oxygen and be invariant with high ascorbic acid concentrations. The rate constants were measured to be 117.2 +/- 15.4 and 15.8 +/- 2.8 M(-1) s(-1) at low (<100 muM) and high AA concentrations, respectively. Unlike free Cu(II), in the presence of AA, Abeta-Cu(II) complexes facilitate the reduction of oxygen by producing H(2)O(2) as a major product. Such a conclusion is drawn on the basis that the reaction stoichiometry between AA and O(2) is 1:1 when the Abeta concentration is kept at a much greater value than that of Cu(II). A mechanism is proposed for the AA oxidation in which the oxidation states of the copper center in the Abeta complex alternates between 2+ and 1+. The catalytic activity of Cu(II) toward O(2) reduction was found to decrease in the order of free Cu(II) > Abeta(1-16)-Cu(II) > Abeta(1-42)-Cu(II) > Cu(II) complexed by the Abeta oligomer/fibril mixture > Cu(II) in Abeta fibrils. The finding that Cu(II) in oligomeric and fibrous Abeta aggregates possesses considerable activity toward H(2)O(2) generation is particularly significant, since in senile plaques of AD patients the coexisting copper and Abeta aggregates have been suggested to inflict oxidative stress through the production of reactive oxygen species (ROS). Although Cu(II) bound to oligomeric and fibrous Abeta aggregates is less effective than free Cu(II) and the monomeric Abeta-Cu(II) complex in producing ROS, in vivo the Cu(II)-containing Abeta oligomers and fibrils might be more biologically relevant given their stronger association with cell membranes and the closer proximity of ROS to cell membranes.
阿尔茨海默病(AD)研究的前沿领域之一是淀粉样β(Abeta)肽与氧化还原金属离子(如 Cu(II)、Fe(III) 和 Fe(II))的相互作用,以及 Abeta-金属复合物对神经元细胞丢失和必需金属及其他细胞物质的内稳态的生物学相关性。本工作关注的是分子氧对 Abeta(1-16)、Abeta(1-42) 和 Abeta(1-42) 聚集物的 Cu(II) 配合物的抗坏血酸氧化反应的动力学和机理研究。发现反应速率随 Abeta-Cu(II) 和溶解氧的浓度线性增加,且随高抗坏血酸浓度不变。在低(<100 μM)和高 AA 浓度下,分别测量到的速率常数为 117.2 ± 15.4 和 15.8 ± 2.8 M(-1) s(-1)。与游离 Cu(II)不同,在 AA 存在下,Abeta-Cu(II) 配合物通过产生 H(2)O(2)作为主要产物来促进氧气的还原。得出这样的结论是基于当 Abeta 浓度保持在远高于 Cu(II)的浓度时,AA 与 O(2)之间的反应计量比为 1:1。提出了一种用于 AA 氧化的机制,其中 Abeta 配合物中铜中心的氧化态在 2+和 1+之间交替。发现 Cu(II)对 O(2)还原的催化活性的顺序为游离 Cu(II) > Abeta(1-16)-Cu(II) > Abeta(1-42)-Cu(II) > Abeta 低聚物/纤维混合物配位的 Cu(II) > Abeta 纤维中的 Cu(II)。特别重要的是,发现寡聚体和纤维状 Abeta 聚集体中的 Cu(II)具有相当的生成 H(2)O(2)的活性,因为在 AD 患者的老年斑中,共存的铜和 Abeta 聚集体已被建议通过产生活性氧物种(ROS)造成氧化应激。尽管与游离 Cu(II)和单体 Abeta-Cu(II)配合物相比,结合于寡聚体和纤维状 Abeta 聚集体的 Cu(II)生成 ROS 的效率较低,但在体内,由于它们与细胞膜的更强结合以及 ROS 与细胞膜的更接近,含 Cu(II)的 Abeta 寡聚物和纤维可能更具有生物学相关性。