Institute of Genetics and Molecular Medicine, CRUK Cancer Research Center, University of Edinburgh, Edinburgh EH4 2XR, UK.
J Mol Biol. 2010 May 7;398(3):414-28. doi: 10.1016/j.jmb.2010.03.023. Epub 2010 Mar 19.
The multidomain E3 ubiquitin ligase MDM2 catalyzes p53 ubiquitination by a "dual-site" docking mechanism whereby MDM2 binding to at least two distinct peptide motifs on p53 promotes ubiquitination. One protein-protein interaction occurs between the N-terminal hydrophobic pocket of MDM2 and the transactivation motif of p53, and the second interaction occurs between the acidic domain of MDM2 and a motif in the DNA-binding domain of p53. A flexible N-terminal pseudo-substrate or "lid" adjacent to the N-terminal hydrophobic pocket of MDM2 has a phosphorylation site, and there are distinct models proposed on how the phosphorylated lid could affect MDM2 function. Biochemical studies have predicted that phosphomimetic mutation will stabilize the lid on the surface of MDM2 and will "open" the hydrophobic pocket and stabilize the MDM2-p53 complex, while NMR studies proposed that phosphomimetic mutation "closes" the lid over the MDM2 pocket and inhibits MDM2-p53 complex formation. To resolve these discrepancies, we utilized a quantitative fluorescence-based dye binding assay to measure the thermal unfolding of wild-type (wt), DeltaLid, and S17D N-terminal domains of MDM2 as a function of increasing ligand concentration. Our data reveal that S17D lid mutation increases, rather than decreases, the thermostability of the N-terminal domain of MDM2 in the absence or in the presence of ligand. DeltaLid mutation, by contrast, increases MDM2 thermoinstability. This is consistent with biochemical data, using full-length MDM2, showing that the S17D mutation stabilizes the MDM2-p53 complex and increases the specific activity of the E3 ubiquitin ligase function of MDM2. These data indicate that phosphomimetic lid mutation results in an "opening," rather than a "closing," of the pocket of MDM2 and highlight the ability of small intrinsically disordered or unstructured peptide motifs to regulate the specific activity of a protein.
多结构域 E3 泛素连接酶 MDM2 通过“双位点”对接机制催化 p53 的泛素化,在此机制中,MDM2 与 p53 上至少两个不同的肽基序结合,促进泛素化。一个蛋白质-蛋白质相互作用发生在 MDM2 的 N 端疏水性口袋和 p53 的反式激活基序之间,第二个相互作用发生在 MDM2 的酸性结构域和 p53 的 DNA 结合结构域中的一个基序之间。MDM2 的 N 端疏水性口袋旁边有一个柔性的 N 端伪底物或“盖子”,其上有一个磷酸化位点,关于磷酸化盖子如何影响 MDM2 功能有不同的模型。生化研究预测,磷酸模拟突变将稳定 MDM2 表面上的盖子,并“打开”疏水性口袋并稳定 MDM2-p53 复合物,而 NMR 研究则提出磷酸模拟突变“关闭”盖子覆盖 MDM2 口袋并抑制 MDM2-p53 复合物形成。为了解决这些差异,我们利用一种定量荧光染料结合测定法,根据配体浓度的增加,测量野生型(wt)、DeltaLid 和 S17D N 端结构域的 MDM2 的热变性。我们的数据表明,S17D 盖子突变增加了 MDM2 N 端结构域的热稳定性,而不是降低了其热稳定性,无论是否存在配体。相比之下,DeltaLid 突变增加了 MDM2 的热不稳定性。这与使用全长 MDM2 的生化数据一致,表明 S17D 突变稳定了 MDM2-p53 复合物并增加了 MDM2 的 E3 泛素连接酶功能的比活性。这些数据表明,磷酸模拟盖子突变导致 MDM2 口袋的“打开”,而不是“关闭”,并强调了小的固有无序或无结构肽基序调节蛋白质比活性的能力。