Buchko Garry W, Tarasevich Barbara J, Roberts Jacky, Snead Malcolm L, Shaw Wendy J
Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
Biochim Biophys Acta. 2010 Sep;1804(9):1768-74. doi: 10.1016/j.bbapap.2010.03.006. Epub 2010 Mar 19.
Amelogenins are the dominant proteins present in ameloblasts during the early stages of enamel biomineralization, making up >90% of the matrix protein. Along with the full-length protein there are several splice-variant isoforms of amelogenin present including LRAP (Leucine-Rich Amelogenin Protein), a protein that consists of the first 33 and the last 26 residues of full-length amelogenin. Using solution-state NMR spectroscopy we have assigned the (1)H-(15)N HSQC spectrum of murine LRAP (rp(H)LRAP) in 2% acetic acid at pH 3.0 by making extensive use of previous chemical shift assignments for full-length murine amelogenin (rp(H)M180). This correlation was possible because LRAP, like the full-length protein, is intrinsically disordered under these solution conditions. The major difference between the (1)H-(15)N HSQC spectra of rp(H)M180 and rp(H)LRAP was an additional set of amide resonances for each of the seven non-proline residues between S12 and Y12 near the N-terminus of rp(H)LRAP indicating that the N-terminal region of LRAP exists in two different conformations. Analysis of the proline carbon chemical shifts suggests that the molecular basis for the two states is not a cis-trans isomerization of one or more of the proline residues in the N-terminal region. Starting from 2% acetic acid, where rp(H)LRAP was monomeric in solution, NaCl addition effected residue specific changes in molecular dynamics manifested by the reduction in intensity and disappearance of (1)H-(15)N HSQC cross peaks. As observed for the full-length protein, these perturbations may signal early events governing supramolecular self-assembly of rp(H)LRAP into nanospheres. However, the different patterns of (1)H-(15)N HSQC cross peak perturbation between rp(H)LRAP and rp(H)M180 in high salt suggest that the termini may behave differently in their respective nanospheres, and perhaps, these differences contribute to the cell signaling properties attributable to LRAP but not to the full-length protein.
釉原蛋白是牙釉质生物矿化早期阶段成釉细胞中存在的主要蛋白质,占基质蛋白的90%以上。除了全长蛋白外,还存在几种釉原蛋白的剪接变体同工型,包括富含亮氨酸的釉原蛋白(LRAP),该蛋白由全长釉原蛋白的前33个和最后26个残基组成。我们利用溶液态核磁共振光谱,通过大量使用全长小鼠釉原蛋白(rp(H)M180)先前的化学位移归属,在pH 3.0的2%乙酸中对小鼠LRAP(rp(H)LRAP)的(1)H-(15)N HSQC谱进行了归属。这种关联是可能的,因为LRAP与全长蛋白一样,在这些溶液条件下本质上是无序的。rp(H)M180和rp(H)LRAP的(1)H-(15)N HSQC谱之间的主要差异在于,rp(H)LRAP N端附近S12和Y12之间的七个非脯氨酸残基中的每一个都有一组额外的酰胺共振,这表明LRAP的N端区域存在两种不同的构象。脯氨酸碳化学位移分析表明,两种状态的分子基础不是N端区域一个或多个脯氨酸残基的顺反异构化。从rp(H)LRAP在溶液中为单体的2%乙酸开始,添加NaCl会导致分子动力学的残基特异性变化,表现为(1)H-(15)N HSQC交叉峰强度降低和消失。正如在全长蛋白中观察到的那样,这些扰动可能标志着rp(H)LRAP超分子自组装成纳米球的早期事件。然而,高盐条件下rp(H)LRAP和rp(H)M180之间(1)H-(15)N HSQC交叉峰扰动的不同模式表明,末端在各自的纳米球中的行为可能不同,也许这些差异有助于LRAP而非全长蛋白的细胞信号特性。