Mount Sinai Medical Center, Wien Center for Alzheimer's Disease and Memory Disorders, Miami Beach, FL 33140, USA.
Am J Geriatr Psychiatry. 2010 Apr;18(4):363-70. doi: 10.1097/jgp.0b013e3181c534a0.
The traditional consensus diagnosis (ConsDx) of normal cognition, mild cognitive impairment (MCI), and dementia relies on the reconciliation of an informant-based report of cognitive and functional impairment by a physician diagnosis (PhyDx), and a neuropsychological diagnosis (NPDx). As this procedure may be labor intensive and influenced by the philosophy and biases of a clinician, the diagnostic algorithm (AlgDx) was developed to identify individuals as cognitively normal, with MCI, or dementia.
The AlgDx combines the PhyDx with the NPDx, using a diagnostic algorithm that provides cognitive diagnoses, as defined by the National Alzheimer Coordinating Center/Uniform Data Set nomenclature. Reliability of the AlgDx was assessed in 532 community-dwelling elderly subjects by its concordance with the ConsDx and association with two biomarkers, medial temporal atrophy (MTA) scores of brain magnetic resonance imaging scans, and Apolipoprotein E (ApoE)-epsilon4 genotype.
A high degree of concordance was observed between ConsDx and AlgDx with a weighted Cohen's kappa of 0.84. Concordance of the AlgDx to the same ConsDx categories ranged from 85% to 92%. Excellent discriminative validity was observed using AlgDx, MTA scores, and ApoE-epsilon4 allele frequencies, each of which distinguished subjects with amnestic MCI and dementia from normal subjects.
The AlgDx of normal cognition, MCI, and dementia is a valid alternative that reduces time, effort, and biases associated with the ConsDx. The inherent reliability of a fixed algorithm, together with its efficiency and avoidance of individual bias, suggests the AlgDx may be used in longitudinal, multisite clinical trials, and population studies of MCI and dementia.
传统的共识诊断(ConsDx)将正常认知、轻度认知障碍(MCI)和痴呆依赖于医生诊断(PhyDx)和神经心理学诊断(NPDx)的信息报告来协调。由于该程序可能劳动强度大,并且受到临床医生的理念和偏见的影响,因此开发了诊断算法(AlgDx)来确定个体是否认知正常、是否有 MCI 或痴呆。
AlgDx 将 PhyDx 与 NPDx 相结合,使用诊断算法根据国家阿尔茨海默病协调中心/统一数据集命名法提供认知诊断。通过其与 ConsDx 的一致性以及与两种生物标志物(脑磁共振成像扫描的内侧颞叶萎缩(MTA)评分和载脂蛋白 E(ApoE)-epsilon4 基因型)的关联,评估了 532 名居住在社区的老年人中 AlgDx 的可靠性。
在 ConsDx 和 AlgDx 之间观察到高度一致性,加权 Cohen's kappa 为 0.84。AlgDx 与相同 ConsDx 类别的一致性范围为 85%至 92%。使用 AlgDx、MTA 评分和 ApoE-epsilon4 等位基因频率观察到极好的判别有效性,它们都将有遗忘型 MCI 和痴呆的患者与正常受试者区分开来。
正常认知、MCI 和痴呆的 AlgDx 是一种有效的替代方法,可减少与 ConsDx 相关的时间、精力和偏见。固定算法的固有可靠性,以及其效率和避免个体偏见,表明 AlgDx 可用于 MCI 和痴呆的纵向、多地点临床试验和人群研究。