Suppr超能文献

半导体表面吸附物的直接和间接电子转移:Ag3Si(111):H 的理论和应用。

Direct and indirect electron transfer at a semiconductor surface with an adsorbate: theory and application to Ag3Si(111):H.

机构信息

Department of Chemistry and Department of Physics, Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, USA.

出版信息

J Chem Phys. 2010 Mar 21;132(11):114702. doi: 10.1063/1.3359433.

Abstract

We consider two pathways of electron transfer induced by a light pulse between a metal cluster and a semiconductor surface. In direct excitation the pulse excites the system directly to the final (electron transferred) state. In indirect excitation the pulse first photoexcites the system to an intermediate state, which then undergoes nonadiabatic transitions to the final state. Quantum state populations are affected by energy dissipation, which occurs on two different time scales-a fast dissipation is due to electronic energy relaxation and a slow (delayed) dissipation arises from vibrational energy relaxation. A theoretical and computational treatment of these phenomena has been done in terms of a reduced density matrix satisfying a generalized Liouville-von Neumann equation. Instantaneous dissipation is described by a Lindblad term containing electronic transition rates, while the delayed dissipation is given by a time integral with a memory supermatrix term derived from the time correlation of atomic displacements in the medium. Populations and quantum coherences during photoinduced excitations are derived from Franck-Condon overlap factors and nonadiabatic electronic couplings. Photoinduced time dependent electric dipoles and related absorption intensities are given. We also examine the viability of using a memory time in the integration of the equations of motion for the reduced density matrix, where the delayed dissipation involves a limit on the duration of the memory effects, and find that this provides significant savings of computational time. We present the results for Ag(3)Si(111):H photoexcited by light in the visible region using electronic parameters from ab initio density functional calculations. We find that indirect electron transfer is a lot more likely for the studied transitions of this nanostructured system, and that it leads to a longer lasting electronic charge separation.

摘要

我们考虑了金属团簇和半导体表面之间由光脉冲诱导的两种电子转移途径。在直接激发中,脉冲直接将系统激发到最终(电子转移)态。在间接激发中,脉冲首先将系统光激发到中间态,然后经历非绝热跃迁到最终态。量子态布居受能量耗散的影响,能量耗散发生在两个不同的时间尺度上-快速耗散是由于电子能量弛豫,而缓慢(延迟)耗散是由于振动能量弛豫引起的。已经根据满足广义刘维尔-冯诺依曼方程的约化密度矩阵对这些现象进行了理论和计算处理。瞬时耗散由包含电子跃迁速率的林德布拉德项描述,而延迟耗散则由具有从介质中原子位移的时间相关推导的记忆超矩阵项的时间积分给出。光激发期间的布居和量子相干性是由 Franck-Condon 重叠因子和非绝热电子耦合得出的。给出了光诱导的时变电偶极子和相关的吸收强度。我们还研究了在约化密度矩阵的运动方程的积分中使用记忆时间的可行性,其中延迟耗散涉及到记忆效应持续时间的限制,并且发现这为计算时间节省了大量时间。我们使用从头算密度泛函计算得到的电子参数,给出了 Ag(3)Si(111):H 在可见光区域中被光激发的结果。我们发现,对于研究的这种纳米结构系统的跃迁,间接电子转移的可能性要大得多,并且它导致了更长时间的电子电荷分离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验