Suppr超能文献

黄单胞菌属木质部小菌 Peroxiredoxin Qbeta 的结构和生化特性:催化机制和高反应活性。

Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity.

机构信息

Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, Brazil.

出版信息

J Biol Chem. 2010 May 21;285(21):16051-65. doi: 10.1074/jbc.M109.094839. Epub 2010 Mar 24.

Abstract

The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 10(7) and 10(6) M(-1) S(-1), respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie approximately 12.3 A apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of alpha-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.

摘要

植物病原细菌 Xylella fastidiosa 是多种植物疾病的病原体。为了在宿主施加的氧化应激下存活,微生物表达抗氧化蛋白,包括基于半胱氨酸的过氧化物酶,称为过氧化物酶。这项工作是对 X. fastidiosa(XfPrxQ)过氧化物酶的催化作用的全面分析,该过氧化物酶属于过氧化物酶类,其特征尚未得到充分描述,以前被认为对过氧化物有中等反应性。与这些假设相反,我们的竞争动力学研究表明,XfPrxQ 与过氧化氢和过氧亚硝酸盐的过氧化物酶反应的二级速率常数分别为 10(7) 和 10(6) M(-1) S(-1),与最有效的过氧化物酶一样快。XfPrxQ 的二硫键仅可被二硫苏糖醇轻微还原;因此,鉴定出硫氧还蛋白系统作为 XfPrxQ 的可能生物还原剂是一个相关的发现。我们还通过定点突变和质谱法表明,在催化循环中会在 Cys-47 和 Cys-83 之间形成一个分子内二硫键。此外,我们阐明了 XfPrxQ C47S 的晶体结构,其中 Ser-47 和 Cys-83 大约相距 12.3 A。因此,形成二硫键需要发生显著的构象变化。事实上,圆二色性数据表明,存在显著的氧化还原依赖的α-螺旋解折叠,这可能是由过氧物酶半胱氨酸氧化引发的。最后,我们提出了一个模型,该模型考虑了这项工作的数据以及文献中的数据。

相似文献

1
Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity.
J Biol Chem. 2010 May 21;285(21):16051-65. doi: 10.1074/jbc.M109.094839. Epub 2010 Mar 24.
2
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Subcell Biochem. 2007;44:83-113. doi: 10.1007/978-1-4020-6051-9_5.
3
Structural insights on the efficient catalysis of hydroperoxide reduction by Ohr: Crystallographic and molecular dynamics approaches.
PLoS One. 2018 May 21;13(5):e0196918. doi: 10.1371/journal.pone.0196918. eCollection 2018.
4
Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61.
J Biol Chem. 2003 Mar 14;278(11):9203-11. doi: 10.1074/jbc.M209888200. Epub 2003 Jan 3.
5
PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase.
Free Radic Biol Med. 2016 Dec;101:249-260. doi: 10.1016/j.freeradbiomed.2016.10.005. Epub 2016 Oct 15.
8
Differential parameters between cytosolic 2-Cys peroxiredoxins, PRDX1 and PRDX2.
Protein Sci. 2019 Jan;28(1):191-201. doi: 10.1002/pro.3520. Epub 2018 Nov 12.

引用本文的文献

1
sp. PCC7002 Uses Peroxiredoxin to Cope with Reactive Sulfur Species Stress.
mBio. 2022 Aug 30;13(4):e0103922. doi: 10.1128/mbio.01039-22. Epub 2022 Jul 21.
2
Native state fluctuations in a peroxiredoxin active site match motions needed for catalysis.
Structure. 2022 Feb 3;30(2):278-288.e3. doi: 10.1016/j.str.2021.10.001. Epub 2021 Oct 21.
4
Peroxiredoxins wear many hats: Factors that fashion their peroxide sensing personalities.
Redox Biol. 2021 Jun;42:101959. doi: 10.1016/j.redox.2021.101959. Epub 2021 Apr 20.
5
Tyrosine Phosphorylation Modulates Peroxiredoxin-2 Activity in Normal and Diseased Red Cells.
Antioxidants (Basel). 2021 Feb 1;10(2):206. doi: 10.3390/antiox10020206.
8
A thioredoxin-dependent peroxiredoxin Q from Corynebacterium glutamicum plays an important role in defense against oxidative stress.
PLoS One. 2018 Feb 13;13(2):e0192674. doi: 10.1371/journal.pone.0192674. eCollection 2018.
9
Experimentally Dissecting the Origins of Peroxiredoxin Catalysis.
Antioxid Redox Signal. 2018 Mar 1;28(7):521-536. doi: 10.1089/ars.2016.6922. Epub 2017 Apr 4.
10
Characterization of a bacterioferritin comigratory protein family 1-Cys peroxiredoxin from Candidatus Liberibacter asiaticus.
Protoplasma. 2017 Jul;254(4):1675-1691. doi: 10.1007/s00709-016-1062-z. Epub 2016 Dec 16.

本文引用的文献

2
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
4
Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS.
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5412-7. doi: 10.1073/pnas.0808980106. Epub 2009 Mar 11.
5
Functional characterisation of the peroxiredoxin gene family members of Synechococcus elongatus PCC 7942.
Arch Microbiol. 2009 Feb;191(2):141-51. doi: 10.1007/s00203-008-0438-7. Epub 2008 Oct 31.
6
His-311 and Arg-559 are key residues involved in fatty acid oxygenation in pathogen-inducible oxygenase.
J Biol Chem. 2008 Sep 5;283(36):24962-71. doi: 10.1074/jbc.M804358200. Epub 2008 Jul 2.
7
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Subcell Biochem. 2007;44:83-113. doi: 10.1007/978-1-4020-6051-9_5.
8
The catalytic mechanism of peroxiredoxins.
Subcell Biochem. 2007;44:61-81. doi: 10.1007/978-1-4020-6051-9_4.
9
Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation.
Arch Biochem Biophys. 2007 Nov 1;467(1):95-106. doi: 10.1016/j.abb.2007.08.008. Epub 2007 Aug 22.
10
Inference of macromolecular assemblies from crystalline state.
J Mol Biol. 2007 Sep 21;372(3):774-97. doi: 10.1016/j.jmb.2007.05.022. Epub 2007 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验