Department of Trauma & Orthopaedics, University Hospital of Wales, Heath Park, Cardiff, UK.
J Orthop Surg Res. 2010 Mar 27;5:23. doi: 10.1186/1749-799X-5-23.
The aim of this study was to compare the stiffness characteristics of Taylor Spatial Frame (TSF) fixed with transverse wires and half pins.
DESIGN & METHODS: Experiments were carried out at the biomechanics laboratory at Cardiff University. All mechanical testing was performed with a servo hydraulic test frame (MTS 858 Mini Bionix II(R), MTS Corp., Mineapolis, USA). Custom built mounts were used to attach the bone rigidly to the one end of machine and the TSF ring to the other. Rings were fixed with 1.8 mm transverse wires or hydroxy-apatite coated 6.5 mm half pins in 45 degrees, 60 degrees, 75 degrees and 90 degrees divergence angles. Bone was loaded with axial load to 400 N and torque to 20 Nm in an indestructible manner. Load/displacement curve data were analyzed for slope and axial and angular displacements.
For larger diameter rings (180 mm), for axial stiffness there was no statistically significant difference between the transverse wires (4 wires with 2 rings) and the half pins (2 pins with 1 ring) (p > 0.05). For 155 mm internal diameter rings, half pins provided statistically higher axial stiffness than transverse wires (p = 0.036). The half pins show significantly more torsion stiffness in both ring diameters (p < 0.05) in comparison to transverse wires. As in axial stiffness, small diameter rings show increased stiffness in torsion. There is increase in axial and torsion stiffness with the increase in the divergence angle between the wires or pins (p < 0.05).
CONCLUSION & CLINICAL RELEVANCE: Half pins provide greater stiffness to TSF frames and allow for axial micro motion as well. This work provides a rationale for clinical decision making about the use of tensioned transverse wires in comparison to half pins in construction of a TSF frame.
本研究旨在比较泰勒空间框架(TSF)固定横向线和半钉的刚度特性。
实验在卡迪夫大学生物力学实验室进行。所有机械测试均在伺服液压测试框架(MTS 858 Mini Bionix II(R),MTS 公司,明尼阿波利斯,美国)上进行。使用定制的安装座将骨头刚性地固定在机器的一端,将 TSF 环固定在机器的另一端。环用 1.8 毫米的横向线或羟基磷灰石涂层的 6.5 毫米半钉以 45 度、60 度、75 度和 90 度的发散角固定。以不可破坏的方式向骨头施加 400 N 的轴向载荷和 20 Nm 的扭矩。分析加载/位移曲线数据以获取斜率以及轴向和角位移。
对于较大直径的环(180 毫米),在轴向刚度方面,横向线(2 个环 4 根线)和半钉(1 个环 2 根钉)之间没有统计学上的显著差异(p>0.05)。对于 155 毫米内径的环,半钉提供的轴向刚度明显高于横向线(p=0.036)。与横向线相比,两种环直径的半钉均表现出显著更高的扭转刚度(p<0.05)。与轴向刚度一样,小直径环在扭转中表现出更高的刚度。随着线或钉之间的发散角的增加,轴向和扭转刚度都增加(p<0.05)。
半钉为 TSF 框架提供更高的刚度,并允许轴向微动。这项工作为临床决策提供了依据,即在构建 TSF 框架时,与使用张力横向线相比,半钉的使用可以提供更好的效果。