Suppr超能文献

酮康唑对 [11C]洛哌丁胺和 [11C]去甲基洛哌丁胺在野生型和 P-糖蛋白敲除小鼠体内分布和代谢的影响。

Effects of ketoconazole on the biodistribution and metabolism of [11C]loperamide and [11C]N-desmethyl-loperamide in wild-type and P-gp knockout mice.

机构信息

Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Nucl Med Biol. 2010 Apr;37(3):335-45. doi: 10.1016/j.nucmedbio.2009.12.010.

Abstract

INTRODUCTION

[(11)C]Loperamide and [(11)C]N-desmethyl-loperamide ([(11)C]dLop) have been proposed as radiotracers for imaging brain P-glycoprotein (P-gp) function. A major route of [(11)C]loperamide metabolism is N-demethylation to [(11)C]dLop. We aimed to test whether inhibition of CYP3A4 with ketoconazole might reduce the metabolism of [(11)C]loperamide and [(11)C]dLop in mice, and thereby improve the quality of these radiotracers.

METHODS

Studies were performed in wild-type and P-gp knockout (mdr-1a/b -/-) mice. During each of seven study sessions, one pair of mice, comprising one wild-type and one knockout mouse, was pretreated with ketoconazole (50 mg/kg, ip), while another such pair was left untreated. Mice were sacrificed at 30 min after injection of [(11)C]loperamide or [(11)C]dLop. Whole brain and plasma samples were measured for radioactivity and analyzed with radio-high-performance liquid chromatography.

RESULTS

Ketoconazole increased the plasma concentrations of [(11)C]loperamide and its main radiometabolite, [(11)C]dLop, by about twofold in both wild-type and knockout mice, whereas the most polar radiometabolite was decreased threefold. Furthermore, ketoconazole increased the brain concentrations of [(11)C]loperamide and the radiometabolite [(11)C]dLop by about twofold in knockout mice, and decreased the brain concentrations of the major and most polar radiometabolite in wild-type and knockout mice by 82% and 49%, respectively. In contrast, ketoconazole had no effect on plasma and brain distribution of administered [(11)C]dLop and its radiometabolites in either wild-type or knockout mice, except to increase the low plasma [(11)C]dLop concentration. The least polar radiometabolite of [(11)C]dLop was identified with LC-MS(n) as the N-hydroxymethyl analog of [(11)C]dLop and this also behaved as a P-gp substrate.

CONCLUSION

In this study, ketoconazole (50 mg/kg, ip) proved partially effective for inhibiting the N-demethylation of [(11)C]loperamide in mouse in vivo but had relatively smaller or no effect on [(11)C]dLop.

摘要

简介

[(11)C]洛哌丁胺和[(11)C]去甲基-洛哌丁胺([(11)C]dLop)已被提议作为成像脑 P 糖蛋白(P-gp)功能的放射性示踪剂。[(11)C]洛哌丁胺的主要代谢途径是 N-去甲基化为[(11)C]dLop。我们旨在测试酮康唑抑制 CYP3A4 是否会减少小鼠中[(11)C]洛哌丁胺和[(11)C]dLop 的代谢,从而提高这些放射性示踪剂的质量。

方法

在野生型和 P-糖蛋白敲除(mdr-1a/b -/-)小鼠中进行了研究。在七次研究期间的每一次,一对包括一只野生型和一只敲除型小鼠的小鼠,用酮康唑(50 mg/kg,ip)预处理,而另一对则不进行预处理。在注射[(11)C]洛哌丁胺或[(11)C]dLop 后 30 分钟处死小鼠。测量全脑和血浆样品的放射性,并进行放射性高效液相色谱分析。

结果

酮康唑使野生型和敲除型小鼠的血浆中[(11)C]洛哌丁胺及其主要放射性代谢物[(11)C]dLop 的浓度增加约两倍,而最极性的放射性代谢物则减少三倍。此外,酮康唑使敲除型小鼠脑内[(11)C]洛哌丁胺和放射性代谢物[(11)C]dLop 的浓度增加约两倍,并使野生型和敲除型小鼠的主要和最极性放射性代谢物的脑浓度分别降低 82%和 49%。相比之下,酮康唑对野生型和敲除型小鼠给予的[(11)C]dLop 和其放射性代谢物的血浆和脑分布没有影响,除了增加低血浆[(11)C]dLop 浓度外。[(11)C]dLop 的最不极性放射性代谢物通过 LC-MS(n)鉴定为[(11)C]dLop 的 N-羟甲基类似物,它也表现为 P-gp 底物。

结论

在这项研究中,酮康唑(50 mg/kg,ip)在体内部分有效抑制了小鼠中[(11)C]洛哌丁胺的 N-去甲基化,但对[(11)C]dLop 的影响相对较小或没有。

相似文献

3
P-glycoprotein function at the blood-brain barrier imaged using 11C-N-desmethyl-loperamide in monkeys.
J Nucl Med. 2009 Jan;50(1):108-15. doi: 10.2967/jnumed.108.056226. Epub 2008 Dec 17.
4
11C-loperamide and its N-desmethyl radiometabolite are avid substrates for brain permeability-glycoprotein efflux.
J Nucl Med. 2008 Apr;49(4):649-56. doi: 10.2967/jnumed.107.047308. Epub 2008 Mar 14.
5
N-desmethyl-loperamide is selective for P-glycoprotein among three ATP-binding cassette transporters at the blood-brain barrier.
Drug Metab Dispos. 2010 Jun;38(6):917-22. doi: 10.1124/dmd.109.031161. Epub 2010 Mar 8.
7
The influence of mass of [11C]-laniquidar and [11C]-N-desmethyl-loperamide on P-glycoprotein blockage at the blood-brain barrier.
Nucl Med Biol. 2012 Jan;39(1):121-5. doi: 10.1016/j.nucmedbio.2011.06.009. Epub 2011 Sep 29.
9
Factors Governing P-Glycoprotein-Mediated Drug-Drug Interactions at the Blood-Brain Barrier Measured with Positron Emission Tomography.
Mol Pharm. 2015 Sep 8;12(9):3214-25. doi: 10.1021/acs.molpharmaceut.5b00168. Epub 2015 Aug 3.
10
Lysosomal trapping of a radiolabeled substrate of P-glycoprotein as a mechanism for signal amplification in PET.
Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2593-8. doi: 10.1073/pnas.1014641108. Epub 2011 Jan 24.

引用本文的文献

1
Common anesthetic used in preclinical PET imaging inhibits metabolism of the PET tracer [F]3F4AP.
J Neurochem. 2024 Sep;168(9):2577-2586. doi: 10.1111/jnc.16118. Epub 2024 May 1.
3
Measurement of Hepatic CYP3A4 and 2D6 Activity Using Radioiodine-Labeled -Desmethylvenlafaxine.
Int J Mol Sci. 2022 Sep 28;23(19):11458. doi: 10.3390/ijms231911458.
4
The respiratory depressant effects of mitragynine are limited by its conversion to 7-OH mitragynine.
Br J Pharmacol. 2022 Jul;179(14):3875-3885. doi: 10.1111/bph.15832. Epub 2022 Mar 30.
5
Assessing Drug Interaction and Pharmacokinetics of Loxoprofen in Mice Treated with CYP3A Modulators.
Pharmaceutics. 2019 Sep 16;11(9):479. doi: 10.3390/pharmaceutics11090479.
6
Breaking Bad: the Structure and Function of the Blood-Brain Barrier in Epilepsy.
AAPS J. 2017 Jul;19(4):973-988. doi: 10.1208/s12248-017-0096-2. Epub 2017 May 26.
7
Factors Governing P-Glycoprotein-Mediated Drug-Drug Interactions at the Blood-Brain Barrier Measured with Positron Emission Tomography.
Mol Pharm. 2015 Sep 8;12(9):3214-25. doi: 10.1021/acs.molpharmaceut.5b00168. Epub 2015 Aug 3.
8
Sunitinib tissue distribution changes after coadministration with ketoconazole in mice.
Eur J Drug Metab Pharmacokinet. 2016 Jun;41(3):309-19. doi: 10.1007/s13318-015-0264-7. Epub 2015 Feb 6.
9
The dilemma of foraging herbivores: dealing with food and fear.
Oecologia. 2014 Nov;176(3):677-89. doi: 10.1007/s00442-014-3076-6. Epub 2014 Oct 1.
10
PET and SPECT radiotracers to assess function and expression of ABC transporters in vivo.
Curr Drug Metab. 2011 Oct;12(8):774-92. doi: 10.2174/138920011798356980.

本文引用的文献

1
PET radiotracers: crossing the blood-brain barrier and surviving metabolism.
Trends Pharmacol Sci. 2009 Aug;30(8):431-40. doi: 10.1016/j.tips.2009.05.005. Epub 2009 Jul 16.
3
A double transgenic mouse model expressing human pregnane X receptor and cytochrome P450 3A4.
Drug Metab Dispos. 2008 Dec;36(12):2506-12. doi: 10.1124/dmd.108.022723. Epub 2008 Sep 17.
5
Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment.
J Pharmacol Exp Ther. 2008 Nov;327(2):288-99. doi: 10.1124/jpet.108.141242. Epub 2008 Aug 5.
6
11C-loperamide and its N-desmethyl radiometabolite are avid substrates for brain permeability-glycoprotein efflux.
J Nucl Med. 2008 Apr;49(4):649-56. doi: 10.2967/jnumed.107.047308. Epub 2008 Mar 14.
8
Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction.
Expert Opin Drug Metab Toxicol. 2006 Dec;2(6):875-94. doi: 10.1517/17425255.2.6.875.
9
Identification and regional distribution in rat brain of radiometabolites of the dopamine transporter PET radioligand [11C]PE2I.
Eur J Nucl Med Mol Imaging. 2007 May;34(5):667-678. doi: 10.1007/s00259-006-0277-1. Epub 2006 Nov 10.
10
Itraconazole, gemfibrozil and their combination markedly raise the plasma concentrations of loperamide.
Eur J Clin Pharmacol. 2006 Jun;62(6):463-72. doi: 10.1007/s00228-006-0133-z. Epub 2006 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验