Institute of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, D-10623 Berlin, Germany.
J Am Chem Soc. 2010 Apr 21;132(15):5443-55. doi: 10.1021/ja1004812.
The electronic structures and nature of silicon-chalcogen double bonds Si=X (X = O, S) with four-coordinate silicon in the unique silanoic silylester 2 and silanoic thioester 3 have been investigated for the first time, by (29)Si solid state NMR measurements and detailed DFT and ab initio calculations. (29)Si solid state NMR spectroscopy of the precursor silylene 1 was also carried out. The experimental and computational study of 2 and 3, which was also supported by a detailed computational study of smaller model systems with Si=O and Si=S bonds, provides a deeper understanding of the isotropic and tensor components of their NMR chemical shifts. The general agreement between the experimental NMR spectra and the calculations strongly support our previous NMR assignment deduced from experiment. The calculations revealed that in 2 delta((29)Si(=O))(iso) is shifted upfield relative to H(2)Si=O by as much as 175 ppm; the substituents are responsible for ca. 100 ppm of this shift, while the remaining upfield shift is caused by change in the coordination number from three to four at the Si=O moiety. The change in coordination number leads to a nearly cylindrical symmetry in the plane which is perpendicular to the Si=O molecular axis (delta(11) approximately delta(22)), in contrast to the significant anisotropy found in this plane in typical doubly bonded compounds. The change in r(Si=O) or in the degree of pyramidality at the Si=O center which accompanies the change in coordination number has practically no effect on the chemical shift. delta((29)Si(=S))(iso) in 3 is shifted downfield significantly relative to that in 2, and a similar trend is found in smaller models with Si=S vs those with Si=O subunits. This downfield shift can be explained by the smaller sigma-pi* energy difference in the Si=S bond, relative to that of the Si=O bond. The NMR measurements of 2 and 3 having a four-coordinate silicon-chalcogen moiety, and the calculations of their tensor components, their bond polarities, and their Wiberg bond indices revealed that the Si=X moieties in both 2 and 3 have a significant pi(Si=X) character; yet, in both molecules there is a substantial contribution from a zwitterionic Si(+)-X(-) resonance structure, which is more pronounced in 2.
首次通过(29)Si 固态 NMR 测量和详细的 DFT 和 ab initio 计算研究了具有四配位硅的独特硅烷酸硅酯 2 和硅烷酸硫酯 3 中硅-杂二键 Si=X(X=O,S)的电子结构和性质。还进行了前体硅烯 1 的(29)Si 固态 NMR 光谱研究。对 2 和 3 的实验和计算研究,以及对具有 Si=O 和 Si=S 键的较小模型系统的详细计算研究的支持,提供了对其 NMR 化学位移各向同性和张量分量的更深入理解。实验 NMR 谱与计算之间的高度一致性强烈支持我们从实验中推导出的先前的 NMR 分配。计算表明,在 2 中,δ((29)Si(=O))(iso)相对于 H(2)Si=O 向磁场内场移动多达 175 ppm;取代基导致约 100 ppm 的这种位移,而剩余的向磁场内场位移是由于 Si=O 部分的配位数从三增加到四。配位数的变化导致 Si=O 分子轴垂直的平面中的近圆柱对称性(δ(11)近似于 δ(22)),与典型双键化合物中该平面中发现的显著各向异性形成对比。随着配位数的变化,Si=O 中心的 r(Si=O)或金字塔度的变化几乎对化学位移没有影响。3 中的 δ((29)Si(=S))(iso)相对于 2 明显向磁场内场移动,并且在具有 Si=S 亚基的较小模型中也发现了类似的趋势。与 Si=O 键相比,Si=S 键的 sigma-pi* 能量差较小,导致这种向磁场内场的位移。具有四配位硅-杂原子部分的 2 和 3 的 NMR 测量以及它们的张量分量、键极性和 Wiberg 键指数的计算表明,2 和 3 中的 Si=X 部分具有显著的 pi(Si=X)特征;然而,在这两种分子中,都有一个来自两性离子 Si(+)-X(-)共振结构的实质性贡献,在 2 中更为明显。