Department of Psychology, Wichita State University, USA.
J Exp Psychol Appl. 2010 Mar;16(1):33-44. doi: 10.1037/a0018501.
Modern tools often separate the visual and physical aspects of operation, requiring users to manipulate an instrument while viewing the results indirectly on a display. This can pose usability challenges particularly in applications, such as laparoscopic surgery, that require a high degree of movement precision. Magnification used to augment the view and, theoretically, enable finer movements, may introduce other visual-motor disruptions due to the apparent speed of the visual motion on screen (i.e., motion scaling). In this research, we sought to better understand the effects of visual magnification on human movement performance and control in operating a tool via indirect vision. Ten adult participants manipulated a computer mouse to direct a pointer to targets on a display. Results (Experiment 1) showed that, despite increased motion scaling, magnification of the view on screen enabled higher precision control of the mouse pointer. However, the relative effectiveness of visual magnification ultimately depended on the scale of the physical movement, and more specifically the precision limits of the whole-hand grip afforded by the mouse. When the physical scale of the hand/mouse movement was reduced (Experiment 2), fine-precision control began to reach its limits, even at full magnification. The role of magnification can thus be understood as "amplifying" the particular skill level afforded by the effecting limb. These findings suggest a fruitful area for future research is the optimization of hand-control interfaces of tools to maximize movement precision.
现代工具通常将操作的视觉和物理方面分开,要求用户在间接观察显示结果的同时操作仪器。这可能会在一些应用中带来可用性挑战,例如腹腔镜手术,因为这些应用需要高度的运动精度。放大倍数用于增强视野,并理论上实现更精细的运动,但由于屏幕上视觉运动的明显速度(即运动缩放),可能会引入其他视觉运动干扰。在这项研究中,我们试图更好地理解通过间接视觉操作工具时,视觉放大对人类运动性能和控制的影响。十名成年参与者使用计算机鼠标操纵指针指向显示器上的目标。结果(实验 1)表明,尽管运动缩放倍数增加,但屏幕上的视图放大使鼠标指针的控制精度更高。然而,视觉放大的相对有效性最终取决于物理运动的规模,更具体地说,取决于鼠标提供的整个手部握持的精度限制。当手部/鼠标运动的物理规模减小时(实验 2),即使在全放大倍数下,精细精度控制也开始达到其极限。因此,可以将放大的作用理解为“放大”所涉及的肢体提供的特定技能水平。这些发现表明,未来研究的一个有前途的领域是优化工具的手动控制界面,以最大限度地提高运动精度。