Suppr超能文献

微小腹膜肿瘤中 18F-FDG 的高摄取需要生理性缺氧。

High 18F-FDG uptake in microscopic peritoneal tumors requires physiologic hypoxia.

机构信息

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.

出版信息

J Nucl Med. 2010 Apr;51(4):632-8. doi: 10.2967/jnumed.109.071233.

Abstract

UNLABELLED

The objective of this study was to examine (18)F-FDG uptake in microscopic tumors grown intraperitoneally in nude mice and to relate this to physiologic hypoxia and glucose transporter-1 (GLUT-1) expression.

METHODS

Human colon cancer HT29 and HCT-8 cells were injected intraperitoneally into nude mice to generate disseminated tumors of varying sizes. After overnight fasting, animals, breathing either air or carbogen (95% O(2) + 5% CO(2)), were intravenously administered (18)F-FDG together with the hypoxia marker pimonidazole and cellular proliferation marker bromodeoxyuridine 1 h before sacrifice. Hoechst 33342, a perfusion marker, was administered 1 min before sacrifice. After sacrifice, the intratumoral distribution of (18)F-FDG was assessed by digital autoradiography of frozen tissue sections. Intratumoral distribution was compared with the distributions of pimonidazole, GLUT-1 expression, bromodeoxyuridine, and Hoechst 33342 as visualized by immunofluorescent microscopy.

RESULTS

Small tumors (diameter, <1 mm) had high (18)F-FDG accumulation and were severely hypoxic, with high GLUT-1 expression. Larger tumors (diameter, 1-4 mm) generally had low (18)F-FDG accumulation and were not significantly hypoxic, with low GLUT-1 expression. Carbogen breathing significantly decreased (18)F-FDG accumulation and tumor hypoxia in microscopic tumors but had little effect on GLUT-1 expression.

CONCLUSION

There was high (18)F-FDG uptake in microscopic tumors that was spatially associated with physiologic hypoxia and high GLUT-1 expression. This enhanced uptake was abrogated by carbogen breathing, indicating that in the absence of physiologic hypoxia, high GLUT-1 expression, by itself, was insufficient to ensure high (18)F-FDG uptake.

摘要

目的

本研究旨在观察腹腔内生长的裸鼠微小肿瘤的¹⁸F-FDG 摄取情况,并将其与生理缺氧和葡萄糖转运蛋白-1(GLUT-1)表达相关联。

方法

将人结肠癌细胞 HT29 和 HCT-8 注射到裸鼠腹腔内,形成大小不一的播散性肿瘤。动物禁食过夜后,分别呼吸空气或卡波金(95%O₂+5%CO₂),在处死前 1 小时静脉注射¹⁸F-FDG 以及缺氧标记物 pimonidazole 和细胞增殖标记物溴脱氧尿苷。在处死前 1 分钟,给予灌注标记物 Hoechst 33342。处死动物后,通过冷冻组织切片的数字放射自显影评估肿瘤内¹⁸F-FDG 的分布。通过免疫荧光显微镜观察 pimonidazole、GLUT-1 表达、溴脱氧尿苷和 Hoechst 33342 的分布,比较肿瘤内的分布。

结果

直径<1mm 的小肿瘤(¹⁸F-FDG 摄取量高且严重缺氧,GLUT-1 表达高。直径 1-4mm 的较大肿瘤(¹⁸F-FDG 摄取量通常较低且无明显缺氧,GLUT-1 表达较低。卡波金呼吸显著降低微小肿瘤中的¹⁸F-FDG 摄取和肿瘤缺氧,但对 GLUT-1 表达影响较小。

结论

微小肿瘤中¹⁸F-FDG 摄取量高,与生理缺氧和高 GLUT-1 表达密切相关。卡波金呼吸可消除这种增强的摄取,表明在没有生理缺氧的情况下,高 GLUT-1 表达本身不足以保证高¹⁸F-FDG 摄取。

相似文献

1
High 18F-FDG uptake in microscopic peritoneal tumors requires physiologic hypoxia.
J Nucl Med. 2010 Apr;51(4):632-8. doi: 10.2967/jnumed.109.071233.
2
The Effect of Carbogen Breathing on F-FDG Uptake in Non-Small-Cell Lung Cancer.
Biomed Res Int. 2019 Nov 22;2019:2920169. doi: 10.1155/2019/2920169. eCollection 2019.
4
Biological characteristics of intratumoral [F-18]‑fluoromisonidazole distribution in a rodent model of glioma.
Int J Oncol. 2013 Mar;42(3):823-30. doi: 10.3892/ijo.2013.1781. Epub 2013 Jan 18.
5
Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy.
Cancer Res. 2007 Aug 15;67(16):7646-53. doi: 10.1158/0008-5472.CAN-06-4353.
6
The reverse Warburg effect and 18F-FDG uptake in non-small cell lung cancer A549 in mice: a pilot study.
J Nucl Med. 2015 Apr;56(4):607-12. doi: 10.2967/jnumed.114.148254. Epub 2015 Feb 26.
7
Detection of hypoxia in microscopic tumors using 131I-labeled iodo-azomycin galactopyranoside (131I-IAZGP) digital autoradiography.
Eur J Nucl Med Mol Imaging. 2010 Feb;37(2):339-48. doi: 10.1007/s00259-009-1310-y. Epub 2009 Nov 17.
8
Dependence of FDG uptake on tumor microenvironment.
Int J Radiat Oncol Biol Phys. 2005 Jun 1;62(2):545-53. doi: 10.1016/j.ijrobp.2005.02.009.
9
(18)F-fluorodeoxyglucose uptake and tumor hypoxia: revisit (18)f-fluorodeoxyglucose in oncology application.
Transl Oncol. 2014 Apr;7(2):240-7. doi: 10.1016/j.tranon.2014.02.010. Epub 2014 Mar 4.

引用本文的文献

1
Oxygen saturation imaging elucidates tumor heterogeneity in gastric cancer.
DEN Open. 2025 Feb 21;5(1):e70077. doi: 10.1002/deo2.70077. eCollection 2025 Apr.
3
The effect of curcumin on hypoxia in the tumour microenvironment as a regulatory factor in cancer.
Arch Med Sci. 2023 Aug 14;19(6):1616-1629. doi: 10.5114/aoms/171122. eCollection 2023.
4
The application of F-FDG PET/CT imaging for human hepatocellular carcinoma: a narrative review.
Quant Imaging Med Surg. 2023 Sep 1;13(9):6268-6279. doi: 10.21037/qims-22-1420. Epub 2023 Aug 4.
5
Visualization of hypoxia in cancer cells from effusions in animals and cancer patients.
Front Oncol. 2022 Dec 22;12:1019360. doi: 10.3389/fonc.2022.1019360. eCollection 2022.
6
Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy.
Front Oncol. 2021 Jul 29;11:700407. doi: 10.3389/fonc.2021.700407. eCollection 2021.
7
Hypoxia and the Tumor Microenvironment.
Technol Cancer Res Treat. 2021 Jan-Dec;20:15330338211036304. doi: 10.1177/15330338211036304.
8
The Hypoxia-Activated Prodrug TH-302: Exploiting Hypoxia in Cancer Therapy.
Front Pharmacol. 2021 Apr 19;12:636892. doi: 10.3389/fphar.2021.636892. eCollection 2021.
10
The Effect of Carbogen Breathing on F-FDG Uptake in Non-Small-Cell Lung Cancer.
Biomed Res Int. 2019 Nov 22;2019:2920169. doi: 10.1155/2019/2920169. eCollection 2019.

本文引用的文献

1
Detection of hypoxia in microscopic tumors using 131I-labeled iodo-azomycin galactopyranoside (131I-IAZGP) digital autoradiography.
Eur J Nucl Med Mol Imaging. 2010 Feb;37(2):339-48. doi: 10.1007/s00259-009-1310-y. Epub 2009 Nov 17.
2
Understanding the Warburg effect: the metabolic requirements of cell proliferation.
Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.
3
Metabolic targeting of cancers: from molecular mechanisms to therapeutic strategies.
Curr Med Chem. 2009;16(13):1561-87. doi: 10.2174/092986709788186255.
4
The Role of 18F-FDG PET/CT in the evaluation of Ascites of Undetermined Origin.
J Nucl Med. 2009 Apr;50(4):506-12. doi: 10.2967/jnumed.108.056382. Epub 2009 Mar 16.
5
18F-FDG PET and PET/CT in the evaluation of cancer treatment response.
J Nucl Med. 2009 Jan;50(1):88-99. doi: 10.2967/jnumed.108.054205.
6
Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage.
Eur J Nucl Med Mol Imaging. 2008 Dec;35(12):2294-303. doi: 10.1007/s00259-008-0888-9. Epub 2008 Aug 6.
7
FDG uptake, a surrogate of tumour hypoxia?
Eur J Nucl Med Mol Imaging. 2008 Aug;35(8):1544-9. doi: 10.1007/s00259-008-0758-5. Epub 2008 May 29.
8
Hypoxia in microscopic tumors.
Cancer Lett. 2008 Jun 18;264(2):172-80. doi: 10.1016/j.canlet.2008.02.037. Epub 2008 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验