Yanik Ahmet A, Adato Ronen, Altug Hatice
Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
J Nanosci Nanotechnol. 2010 Mar;10(3):1713-8. doi: 10.1166/jnn.2010.2045.
The extraordinary light transmission effect (EOT) through sub-wavelength nanoapertures in opaque metal films has lead to observation of a wide variety of exciting new optical phenomena. This remarkable effect is generally related to the interaction of the light with the extended plasmonic resonances on the surface of the metal film and localized surface plasmons in the apertures. On the other hand, there is little conceptual understanding for controlling the localized surface plasmonic behavior of the individual apertures and their coupling to the extended surface plasmons. In this letter, we present an intuitive and straightforward picture of the extra-ordinary light transmission phenomena based on basic antenna principles for plasmonic excitations and coupling of these plasmonic excitations in complex nano-apertures. Our quasi-static model remarkably well explains our experimental measurements in shape anisotropic structures with unique properties controlled by adjusting the size and the geometry of the apertures. Our approach puts forward new design principles for potential applications ranging from subwavelength optoelectronics and data storage to bio/chemical sensing.
通过不透明金属薄膜中的亚波长纳米孔径实现的超常光传输效应(EOT)引发了人们对各种令人兴奋的新光学现象的观测。这种显著效应通常与光与金属薄膜表面扩展等离子体共振以及孔径中局域表面等离子体的相互作用有关。另一方面,对于控制单个孔径的局域表面等离子体行为及其与扩展表面等离子体的耦合,人们在概念上的理解还很少。在这封信中,我们基于等离子体激发的基本天线原理以及这些等离子体激发在复杂纳米孔径中的耦合,给出了超常光传输现象直观而直接的图景。我们的准静态模型很好地解释了我们在形状各向异性结构中的实验测量结果,这些结构具有通过调整孔径的大小和几何形状来控制的独特性质。我们的方法为从亚波长光电子学和数据存储到生物/化学传感等潜在应用提出了新的设计原则。